
STERA 3D ver. 11.5

<u>ST</u>ructural <u>Earthquake Response Analysis</u> 3D

Dr. / Prof. Taiki SAITO

TOYOHASHI UNIVERSITY OF TECHNOLOGY (TUT), JAPAN

Preface

This software is developed for the following analyses of steel / reinforced concrete / steel reinforced concrete / seismic isolation / response control / buildings:

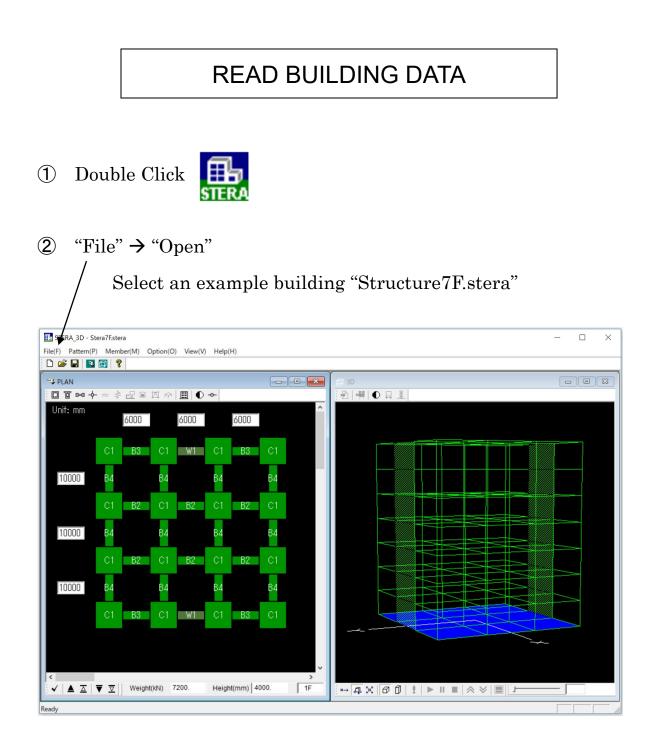
- 1) Linear modal analysis,
- 2) Nonlinear static push-over analysis,
- 3) Nonlinear cyclic analysis
- 4) Nonlinear earthquake response analysis.

This software is distributed for free for the use of research and educational purposes.

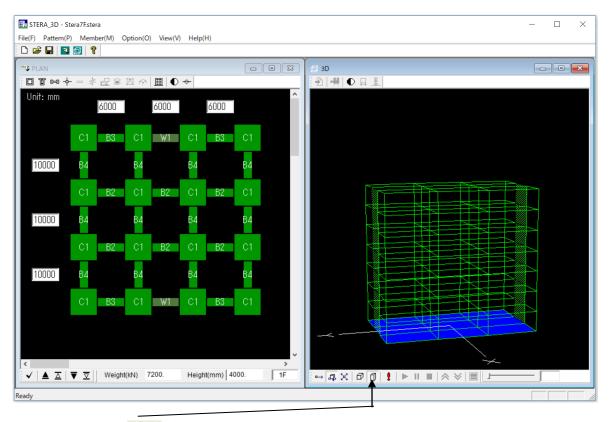
Since this software is still under development, the author cannot take any responsibility for the results of the software. It is greatly appreciated to have any opinion for future improvement.

1 March, 2015

Taiki SAITO E-mail: tsaito@ace.tut.ac.jp Professor, Dr. of Engineering, Toyohashi University of Technology, Japan

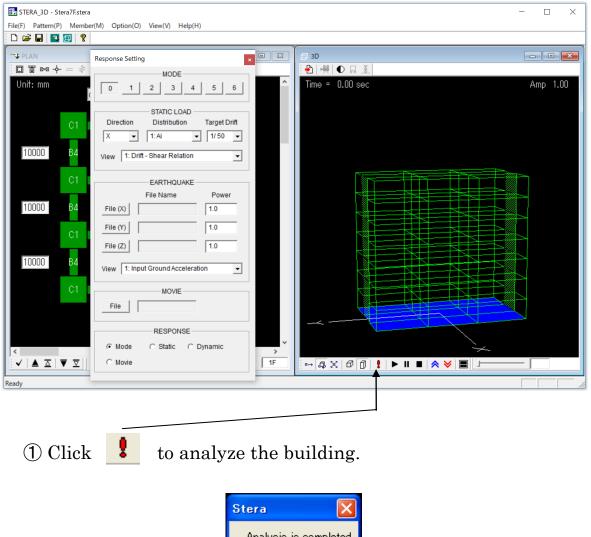

Update history

2016/11/12	STERA_3D Ver.8.5 is uploaded.
	 Minor change of input data for Wall (direct input)
2016/12/03	STERA_3D Ver.8.6 is uploaded.
	 Minor error in static analysis using Mode distribution is fixed.
2016/12/11	STERA_3D Ver.8.7 is uploaded.
	• Modification of stiffness degradation factor at the yield point of beam
	elements is adopted (see the detail in Technical Manual).
2016/12/25	STERA_3D Ver.8.8 is uploaded.
	• Bugs of masonry element and connection panel were fixed.
2017/01/18	STERA_3D Ver.8.9 is uploaded.
	Effective modal mass is shown in Modal analysis
	• You can set a different mass value in each node
2017/03/20	STERA_3D Ver.9.0 is uploaded.
	• You can set the parameters of band-pass filter to get the ground
	displacement.
2017/08/01	STERA_3D Ver.9.1 is uploaded.
	Minor change of the format of output file
2017/09/11	STERA_3D Ver.9.2 is uploaded.
	 Hardening model is added for NRB of Seismic Isolator
2017/10/08	STERA_3D Ver.9.3 is uploaded.
	• Ground spring is added.
2017/10/24	STERA_3D Ver.9.4 is uploaded.
	• The default setting of "upper beam" of damper and masonry is
	changed to be "rigid" beam instead of "none".
2017/11/27	STERA_3D Ver.9.6 is uploaded.
	• Fixed a mistake in mass setting of Ver. 9.4. Note that mass is set
	correctly in Ver. 9.3.
2019/02/03	STERA_3D Ver.10.0 is uploaded.
	• You can set a vibrator on a floor to shake the building.
	• You can execute the program from command line.
	• Automatic generator for lumped mass model is implemented.
	You can set an original load distribution for static analysis
	• A new nonlinear spring is added for passive damper
2019/05/20	STERA_3D Ver.10.1 is uploaded.
	• You can consider radiation damping for ground spring.
2019/07/25	STERA_3D Ver.10.2 is uploaded.
	• You can apply dynamic wind forces to the building.
2019/10/08	STERA_3D Ver.10.3 is uploaded.


	• The buckling of steel members can be considered.
	• You can conduct continuous analysis for dynamic inputs (earthquake and wind).
2020/03/16	STERA_3D Ver.10.4 is uploaded.
	• Pile can be considered for ground spring.
	• Air spring has been added to the vertical spring.
2020/04/14	STERA_3D Ver.10.5 is uploaded.
	• You can set part of the floor to be rigid.
2020/06/11	STERA_3D Ver.10.6 is uploaded.
2020/08/04	STERA_3D Ver.10.7 is uploaded.
	• You can select rebar size from the table.
2020/09/24	STERA_3D Ver.10.8 is uploaded.
2021/10/10	STERA_3D Ver.11.0 is uploaded.
	• For RC column and RC wall, the nonlinear bending springs
	independent in x and y directions are introduced.
	• For Steel beam, the nonlinear shear spring for hysteresis damper is
	introduced.
	• Damage indices of members are introduced.
2022/08/22	STERA_3D Ver.11.1 is uploaded.
	• The input windows for columns and beams (direct input for
	parameters of hysteresis model) are changed.
	• "Base Plate" and "Pendulum Spring" are added to External Spring.
2022/12/14	STERA_3D Ver.11.2 is uploaded.
	• FPB (Friction Pendulum Bearing) is added to the seismic isolation
	elements.
2023/03/10	STERA_3D Ver.11.3 is uploaded.
	• The formula of compression strength of Masonry element is changed.
2023/06/06	STERA_3D Ver.11.4 is uploaded.
	• Viscoelastic damper is added to the passive damper.
	• You can set the restrained freedom of the partial rigid slab at the
	center of gravity.
2024/07/15	STERA_3D Ver.11.5 is uploaded.
	• Viscoelastic damper is added to the shear spring of direct beams.
	• Some output files are in csv format.

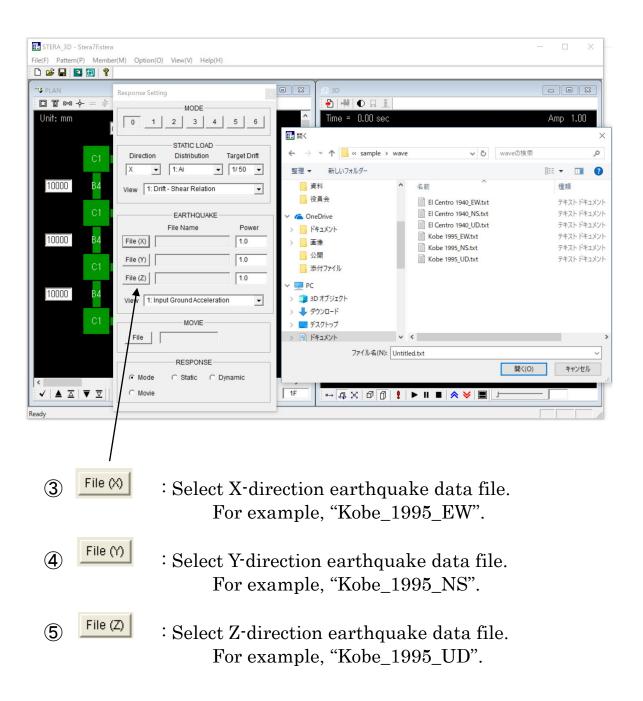
STERA 3D User Manual

Quick User Manual



MOVE THE BUILDING

- (1) Click f to be actual size.
- 2 Drag the right mouse on the image to rotate the building.
- ③ Drag the left mouse on the image to enlarge and reduce.


EARTHQUAKE RESPONSE

(2) After the message,

Analysis is completed.

"Response Setting Dialog" will appear.

ES STERA_3D - Stera7F.stera		– 🗆 X
File(F) Pattern(P) Member(M) Option(O) View(V) Help(H) Image:		
		□ 3D □ ■ ■
Unit: mm 0 1 2 3 4 5 6	^	Time = 5.84 sec ■ 1 < U < 5 ■ 5 < U Amp 16.00
C1 Direction Distribution Target Drift X V 1: Ai V 1/50 V		
10000 B4		
C1 EARTHQUAKE		
File Name Power 10000 B4 File (X) Kobe 1995_EW.bt 1.0		
C1 File (Y) Kobe 1995_NS.bt 1.0		
File (Z) Kobe 1995_UD.bt 1.0 10000 64 11 10		x - m Mall m Mar 617.1 gal
View 1: Input Ground Acceleration		X
C1 File		Y
RESPONSE		- 332.2 gal
C Mode C Static @ Dynamic	>	2 20.0 sec
✓ ▲ 五 ▼ 코 C Movie	1F	↔ậ╳▯▯!▶◨◼◈◈◼◗━━
Ready		

Start the response

6

- Stop the response
- Amplify the response 🗧
 - Reduce the response
- Change the view from double screen to single screen

STERA 3D User Manual

User Manual

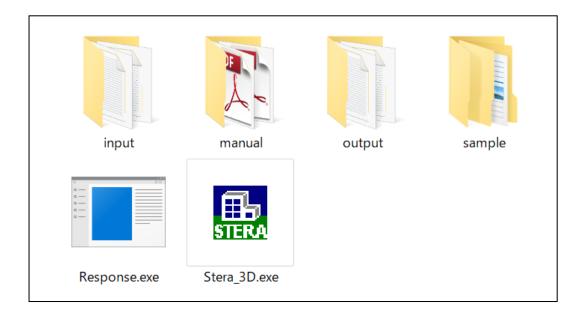
Index

1	Basic Assumptions
2	File Arrangement
3	Initial View17
4	Setting Member Pattern
5	Initial Setting of Building and Element
5.1	Element Menu20
5.2	Activate Element
5.3	Change the number of stories, spans25
6	Input Element Information
6.1	RC Column
6.2	RC Beam
6.3	RC Wall
6.4	Steel Column
6.5	Steel Beam
6.6	Steel Wall (Brace)
6.7	SRC (Steel Reinforced Concrete) Column
6.8	SRC (Steel Reinforced Concrete) Beam
6.9	SRC (Steel Reinforced Concrete) Wall
6.10	Column (Direct input for parameters of hysteresis model)
6.11	Beam (Direct input for parameters of hysteresis model)42
6.12	Wall (Direct input for parameters of hysteresis model)45
6.13	Column (Mixed mode)
6.14	Beam (Mixed mode)
6.15	Wall (Mixed mode)
6.16	Floor Slab (2D Rigid)
6.17	Floor Slab (3D Rigid)
6.18	Floor Slab (Flexible)
6.19	Floor Slab (Mix)
6.20	Connection Panel
6.21	External Spring
6.22	2 Seismic Isolator
6.23	Passive Damper
6.24	Masonry Wall
6.25	Ground Spring (Cone model)
6.26	Ground Spring (Direct)74

7	Initial Setting of Analysis Condition75
7.1	Restrained freedom, Rigid floor, P-Delta effect, Mass distribution75
7.2	Condition of static analysis
7.3	Condition of dynamic analysis81
8	3D View of Building and Response
8.1	3D View of building83
8.2	Modal analysis85
8.3	Nonlinear static push-over analysis86
8.4	Nonlinear earthquake response analysis89
8.5	Nonlinear vibrator response analysis94
8.6	Wind response analysis95
8.7	Response output member
8.8	Save Nonlinear Earthquake Response as a Movie File
8.9	Change Analysis
9	Input Earthquake Ground Motion100
9.1	Format of input earthquake data file100
10	Save and Open Files101
10.1	Save building data101
10.2	Save results of analysis in text files102
10.3	Output text files104
11	Continuous Analysis
12	Automatic generation of Lumped Mass Model (LMM)122
13	Command line execution

1 Basic Assumptions

- 1) In the default setting, a floor diaphragm is considered to be rigid for in-plane deformation and free for out-of-plane deformation. Elastic deformation of a floor diaphragm for in-plane deformation can be considered by selecting the FEM model in the option menu.
- 2) All structural elements are modeled by line-elements with nonlinear springs except the floor diaphragm which can be by a FEM model.
- 3) Beam element is represented by the model with nonlinear flexural springs at the both ends and a nonlinear shear spring in the middle of the element,
- 4) Column element is represented by the MS (multi spring) model with nonlinear axial springs in the sections of the both ends and two directional nonlinear shear springs in the middle of the element by default,
- 5) Wall element is represented by the MS (multi spring) model with nonlinear axial springs in the sections of the both ends and nonlinear shear springs in the middle of the wall panel as well as in the two side columns by default,
- 6) Steel brace is represented by the truss element,
- 7) Base-isolation element is represented by the MSS (multi shear spring) model with nonlinear shear springs in X-Y plane,
- 8) Energy dissipation dampers and masonry element are introduced as nonlinear shear springs in a frame,
- 9) Shear deformation of connection panel between beam and column is considered by selecting elastic connection in the option menu.
- 10) In the default setting, structural damping is proportional damping to initial stiffness. It can be changed to be other types of damping by the option menu.

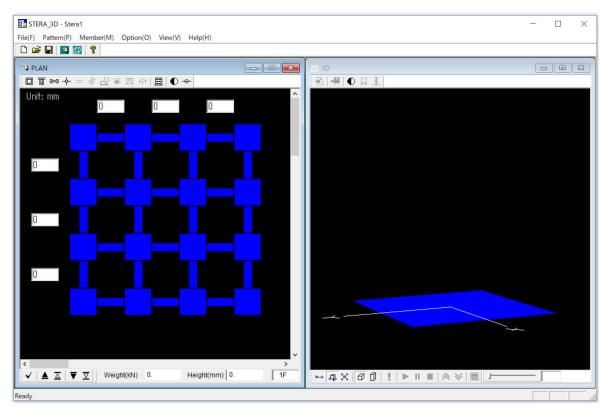

11) Rebar sizes follow U.S. and Japanese standards, but can be changed to Euro standards, etc. in the options menu.

Other assumptions and details are written in "Technical Manual".

2 File Arrangement

Please check if you have the following files and folders in the folder "STERA 3D V*.*":

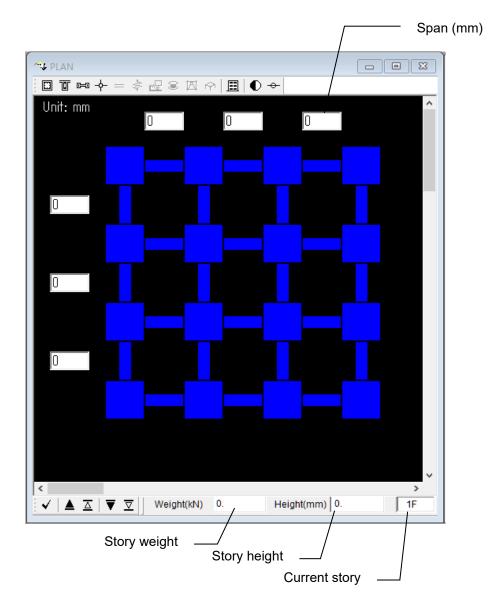
Stera_3D_J.exe Response.exe input / output/	 Main program Sub-program for response output Folder for input (empty) Folder for output (empty) 	Please keep them in the same folder.
manual/	Folder for manuals	
STERA_user_manual		
STERA_technical_manua	I	
sample/	Folder for sample	
building/	Folder for sample building for STER	4
wave/	Folder for sample input waves	

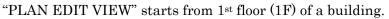


3 Initial View

Please double crick "Stera 3D.exe"

The left view is "PLAN EDIT VIEW" where you input building plan data, and the right view is "3D VIEW" where you can see the building shape and its response after the analysis.

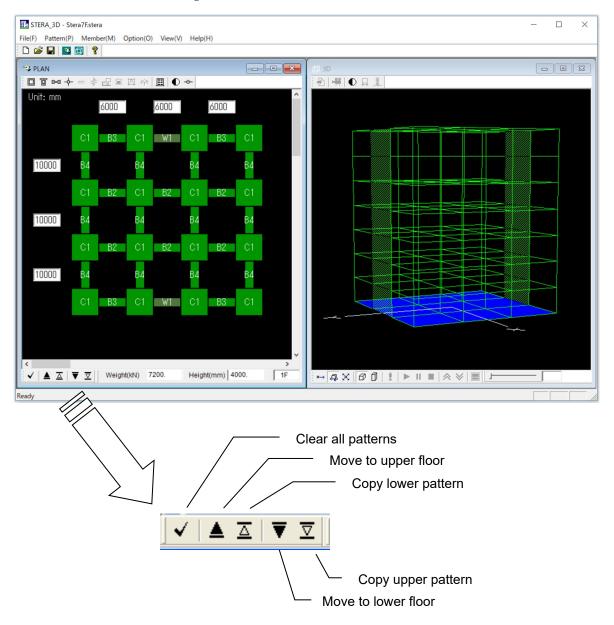

To open the building data already saved, [File] \rightarrow [Open], and select the file.



PLAN EDIT VIEW

3D VIEW

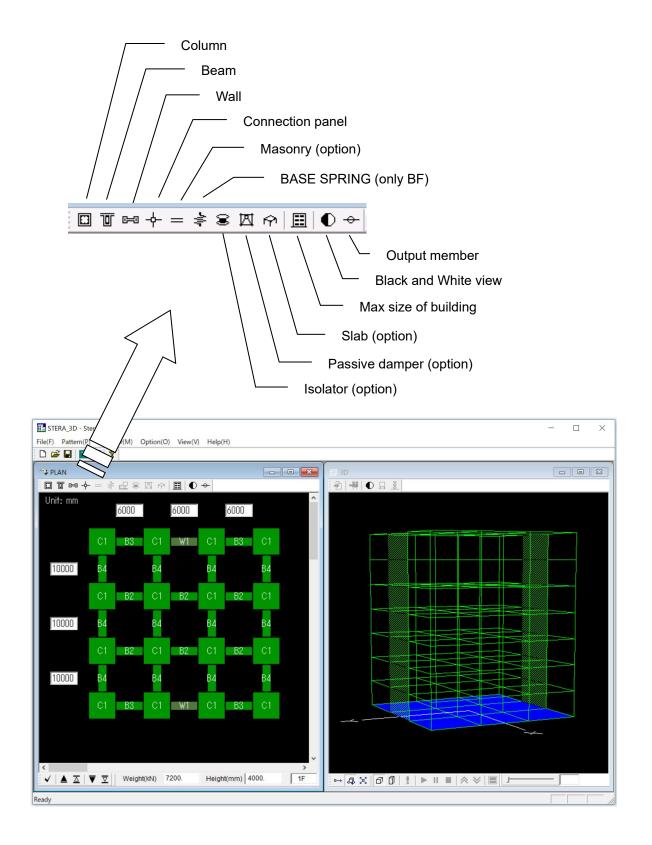
4 Setting Member Pattern


- Please click the place you want to set.
- Please click again to change the element. It will be changed in the following order:
 - $\diamond \quad \text{Column (green)} \rightarrow \text{Empty} \rightarrow \text{Column(green)}$
 - $\Leftrightarrow \quad \text{Beam (green)} \rightarrow \text{Wall (dark green)} \rightarrow \text{Empty} \rightarrow \text{Beam (green)}$

But, in case of the basement floor (BF), the order is changed as:

♦ Base Spring (brown) \rightarrow Empty \rightarrow Base Spring (brown)

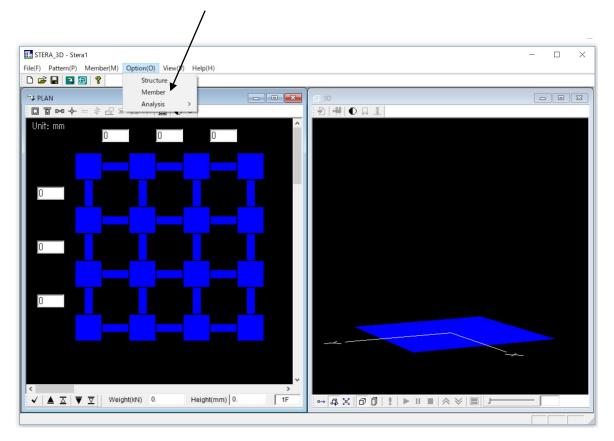
If you select Masonry element, Damper element, Isolator element, External Spring,

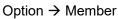

- ♦ Column (green) \rightarrow Isolator (brown) \rightarrow Empty \rightarrow Column(green)
- ♦ Beam (green) → Wall (dark green) → Damper (brown) → Masonry (brown) →
 External Spring (brown) → Empty → Beam (green)
- \diamond If you click while holding down the control key (Ctrl), you can delete immediately.
- By dragging your mouse in a region, you can set all the elements in the region at once.
- By clicking the right button of your mouse, you can change the number of element type for column (C1-C100), for beam (B1-B100), and for wall (W1-W100) etc.
- To move to another floor and copy or clear the member patterns, you can use the following buttons arranged at the bottom of the PLAN EDIT VIEW:

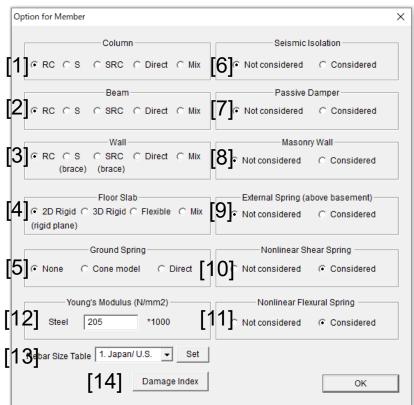
You can check the arrangement of members on the "3D VIEW".

5 Initial Setting of Building and Element

5.1 Element Menu


5.2 Activate Element




In the default condition,

- All columns, beams and walls are reinforced concrete elements,
- Other elements are non-active in the element menu.

To change structural type and activate other elements, please select "Option" in the main menu and select "Member" from the pull down menu.

[1] Column, [2] Beam, [3] Wall

RC: Reinforced concrete, S: Steel, SRC: Steel Reinforced Concrete, Direct: Direct input of force and displacement, Mix: Mixed mode

If you select [RC], [S], [SRC], [Direct], all If you select [Mix], you can use members will have the same structure. different structure for each member. Therefore, the message will appear asking "Clear all member information?". umn RC C S \sim SRC Direct O Mix Beam Clear \times ○ SRC ○ Direct ○ Mix Clear all member information? Wall RC O S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 C SRC C Direct C Mix YES NO (brace) (brace)

[4] Floor Slab

2D Rigid: Rigid for in plane deformation and free for out-of-plane deformation 3D Rigid: Rigid for all directional deformation

Flexible: Elastic for in plane deformation and free for out-of-plane deformation Mix: Different slab condition for each floor

[5] Ground Spring

Cone model: Calculate complex ground stiffness by cone model Direct: Direct input of stiffness and damping of ground spring

[6] Isolator

[7] Passive Damper Device

- [8] Masonry Wall
- [9] External Spring above basement including air spring
- [10] Nonlinear Shear Spring

If it is not considered, shear springs in beams, columns and walls are elastic.

[11] Nonlinear Flexural Spring

If it is not considered, flexural springs in beams, columns and walls are elastic.

[12] Young's Modulus of Steel

[13] Rebar Size Table

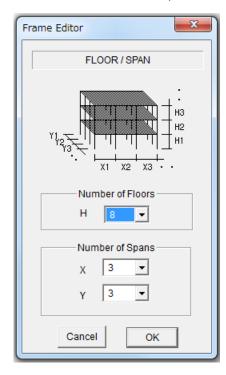
In the default setting, rebar size is based on the standard of Japan and U.S.

Rebar Size Table 1. Japan/ U.S. 👻 Set

Bar Size Table			X
Reinforcing Bar Size and Are	ea (mm2)		Original rebar sizes (cross-sectional area) that
Standard		Original	are not in the standard can
D 6(# 2) 31.67	D29(# 9) 642.4	S 1 0	be defined by users.
D 8 49.51	D32(#10) 794.2	S 2 0	
D10(# 3) 71.33	D35 956.6	S 3 0	
D13(# 4) 126.7	D38 1140	S 4 0	
D16(# 5) 198.6	D41 1340	S 5 0	
D19(# 6) 286.5	D51 2027	S 6 0	
D22(# 7) 387.1		S 7 0	
D25(# 8) 506.7		S 8 0	
#2~#10 are U.S	5. standard	ОК	

You can select Euro	(Eurocode)	from the	pull-down	menu.
---------------------	------------	----------	-----------	-------

Rebar Size	Table 2. E	uro	✓ Set	
Bar Size Table				×
Reinforcing) Bar Size and A	rea (mm2)		
Standard -				Original
D 6	28.27	D28	615.75	S 1 0
D 8	50.27	D32	804.25	The cross-sectional area is equal to
D10	78.54	D40	1256.64	the area of the circle with diameter D,
D12	113.1	D50	1963.5	that is $A = \pi D^2/4$
D14	153.94			S 5 0
D16	201.06			S 6 0
D20	314.16			S 7 0
D25	490.87			S 8 0
				ОК


[14] Damage Index

The parameters for the two types of damage index, Park and Ang damage index and Fatigue damage index, are given as follow by default. Please refer "Technical Manual" for the detail of each damage index.

amage Index			
	D	AMAGE INDEX	
- 1. Park and Ang Damage In	dex: D = Um/	/Uu + B Uh/Uu —	
	Uu	в	Q
RC Column (Flexure)	15	0.2	
RC Beam (Flexure)	15	0.2	
RC Wall (Flexure)	15	0.05	
RC Wall (Shear)	8	0.1	$U_m = d_m/dy$ $U_u = d_u/dy$, $U_h = E_h/(Q_y d_y)$
2. Fatique Damage Index—			
	С	к	using the Rainflow method
Steel Beam Connection	4	0.3	$D = \sum_{i=1}^{n} \frac{n_i}{N_i} + U = C N_i^{-K}$
Damper (Bilinear)	4	0.3	using the maximum ductility $D = \frac{U_h}{4(U_m - 1)} \left(\frac{U_m}{C}\right)^{\frac{1}{K}}$
			ОК

5.3 Change the number of stories, spans

MAX. SIZE OF BUILDING	
IVIAA. SIZE UF DUILDIING ()

You can change the maximum number of spans and stories of the building. The default setting is

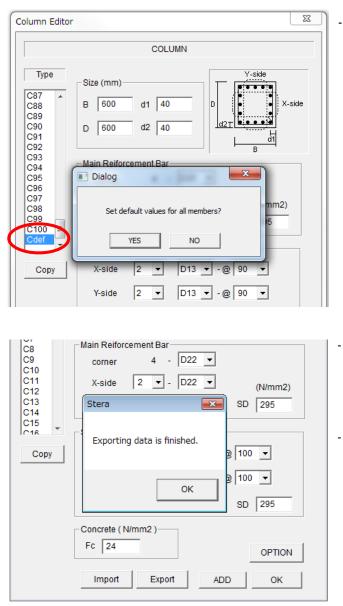
Story	:	up to 8
Span	:	up to 3 in X-direction
		up to 3 in X-direction

The maximum numbers you can select are:

Story	:	up to 61
Span	:	up to 30 in X-direction
		up to 20 in X-direction

ſ	Frame Editor	
	FLOOR / SPAN	
	: H3 H3 H2 Dialog	J
	Clear all building information?	
4	Number of Spans	
	χ 5 💌	
	Y 5 -	
	Cancel OK	

After you select new numbers, a dialog will appear asking if you clear all building information or not. If you select "NO", you can keep the same building information.

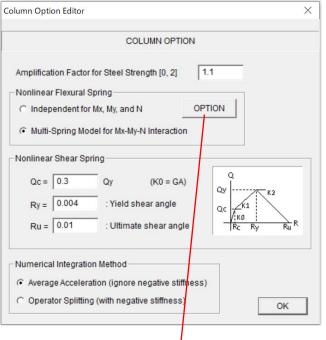

6 Input Element Information

6.1 RC Column

COLUMN (

Column Editor	×
	COLUMN
Type C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C7 C7 C8 C9 C10 C11 C12 C1 C1 C1 C2 C3 C1 C1 C2 C3 C3 C4 C5 C5 C6 C7 C7 C7 C8 C9 C10 C10 C10 C10 C7 C7 C7 C8 C9 C10 C10 C10 C10 C10 C10 C10 C10	Size (mm) B 600 d1 40 D 600 d2 40 Main Reiforcement Bar corner 4 - D22 \checkmark X-side 2 \checkmark - D22 \checkmark (N/mm2) Y-side 2 \checkmark - D22 \checkmark SD 295 Shear Reinforcement Bar
Сору	X-side 2 💌 - D13 💌 - @ 100 💌
	Y-side 2 💌 - D13 💌 - @ 100 💌
	SD 295
	Concrete (N/mm2) Fc 24 OPTION
	Import Export ADD OK

- Please input the section size where d1 and d2 are the distances of X-rebars and Y-rebars respectively. If rebars are arranged in two layers, the distance is determined as the center of rebar area.
- For the number of reinforcing bars and their size, please select the values from the popup windows.
- For steel strength SD and concrete compressive strength Fc, you can input values by changing the default values.
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.



You can set the default values for all members by selecting the last member type "Cdef".

- You can export member data to a text file by [Export] button. Automatically, the text file, "Data_column_rc.txt" is created in the same folder of STERA_3D.
- You can import member data from a text file by [Import] button. The format of the import file must be the same as the exported file.

"Data_column_rc.txt" is a text file with member data separated by TAB.

12 600 600 40 40 9 1	n 2 3 4 5 6 7 8 9 10 11	Width(mm) 600 600 600 600 600 600 600 600 600 60	Heisht(mm) 600 600 600 600 600 600 600 600 600 60	d1 40 40 40 40 40 40 40 40 40 40 40 40	d2 40 40 40 40 40 40 40 40 40 40 40 40	vsize_C 9 9 9 9 9 9 9 9 9 9 9 9 9	vno_X 1 1 1 1 1 1 1 1 1 1 1
----------------------	---	--	---	--	--	--	--

In [OPTION] menu,

- The default steel strength is assumed to be 1.1 times larger than the nominal strength.
- For nonlinear flexural spring, you can select from 1) the model with independent springs for Mx, My and N or 2) MS (multi-spring) model for Mx-My-N nonlinear interaction. The default setting is MS model.
- Shear crack strength Qc is defined as the ratio of the yield strength Qy. The default value is 0.3.
- The default values of yield and ultimate shear deformation angles, Ry and Ru are 0.004 (=1/250) and 0.01 (1/100), respectively.
- You can identify the numerical integration method in earthquake response analysis from Average Acceleration method or Operator Splitting method. The default is Average Acceleration method which replace the negative stiffness to be a small positive stiffness for the stability of calculation.

▼ ×
0.5
0
0
ОК

In [OPTION] menu, the parameters to control the shape of hysteresis model are defined as follows:

- R1: the default value of stiffness degrading ratio in the trilinear hysteresis is 0.5. (0: no degradation)
- R2: the default value of slip stiffness ratio in the trilinear hysteresis is 0.0 (0: no slip).
- R3: the default value of strength degrading ratio in the trilinear hysteresis is 0.0.

Please refer "Technical Manual" for the detail.

6.2 RC Beam

BEAM	(T)
------	---	---	---

Beam Editor	
	BEAM
Type B1 B2 B3 E B4 B5 B6	Size (mm) B 300 d1 40 D 600 d2 40 S 150 B 150 B 150
87 88 89 810 811 812 813 814 815 816 816 817	Main Reinforcement Bar TOP 2 - D22 - (N/mm2) BOTTOM 2 - D22 - SD 295 Shear Reinforcement Bar 2 - D13 - @ 150 - SD 295
Copy	Slab Reinforcement 1 • - D13 • - @ 200 • SD 295 Concrete (N/mm2) Fc 24 OPTION
	Import Export ADD OK

- Please input the section size where d1 and d2 are the distances of upper and bottom rebars. If rebars are arranged in two layers, the distance should be the center of rebar area.
- For the number of reinforcing bars and their size, please select the values from the popup windows.

_

- For the material strength, SD and Fc, you can input values by changing the default values.
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.
- You can set default values for all members by selecting the last member type "Bdef".
 - You can export member data to the text file "Data_beam_rc.txt" by [Export] button.
- You can import member data from a text file by [Import] button.
- Please click [OK] to finish.

Beam Option Editor	×
BEAM OPTION	
1. Amplification Factor for Steel Strength [0,2]	1.1
2. Rs : Effective Slab Ratio [0,0.5]	0.1
3. R1 : Stiffness Degrading Ratio [0,1]	0.5
4. R2 : Slip Stiffness Ratio [0,1]	0
5. R3 : Strength Degrading Ratio [0,1]	0
6. Ru : Ultimate Rotation Angle [0,1]	0.02
7. Kp/Ky : Stiffness Ratio over Ry [0, 1]	0.001
8. Ku/Ky : Stiffness Ratio over Ru [-1, 1/1000]	0.001
	ОК

In [OPTION] menu,

_

- The default steel strength is assumed to be 1.1 times larger than the nominal strength.
- Rs: the effective slab width to contribute flexural behavior of beam is assumed to be 0.1 times beam length.

The parameters to control the shape of hysteresis model are defined as follows:

- R1: the default value of stiffness degrading ratio in the trilinear hysteresis is 0.5. (0: no degradation)
- R2: the default value of slip stiffness ratio in the trilinear hysteresis is 0.0 (0: no slip).
- R3: the default value of strength degrading ratio in the trilinear hysteresis is 0.0.
- Ru: the default value of Ultimate rotation angle Ru is 1/50 (=0.02)
- Kp/Ky: the default value of stiffness ratio over Ry is 0.001
- Ku/Ky: the default value of stiffness ratio over Ru is 0.001 (could be negative)

6.3 RC Wall

WALL	

Wall Editor	×
	WALL
Type W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 V11	Size t (mm) 150 L Shear Reinforcement in a Panel SD (N/mm2) 2 - D13 - @ 150 295
Сору	Concrete (N/mm2) Fc 24
	OPTION Import Export ADD OK

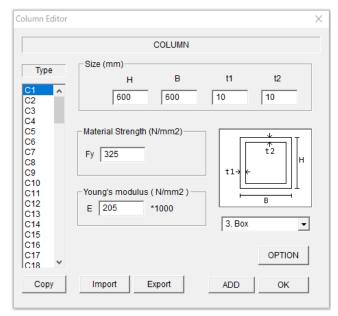
- Please input the section size.
- For the number of reinforcing bars and their size, please select the values from the popup windows.
- For the material strength, SD and Fc, you can input values by changing the default values.
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.
- You can set default values for all members by selecting the last member type "Wdef".
- You can export member data to the text file "Data_wall_rc.txt" by [Export] button.
- You can import member data from a text file by [Import] button.
 - Please click [OK] to finish.

_

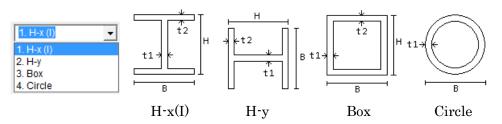
Wall Option Editor	>
WALL OPTION	
1. Amplification Factor for Steel Strength [0, 2] 1.1
2. Reduction Factor for Stiffness [0, 1]	0.2
3. Reduction Factor for Strength [0, 1]	1
Nonlinear Flexural Spring	
C Independent for Mx, My, and N	OPTION
Multi-Spring Model for Mx-My-N Inter	raction
	ОК
RC Option Editor	×
RC OPTION	
R1 : Stiffness Degrading Ratio [0, 1]	0.5
R2 : Slip Stiffness Ratio [0, 1]	0
R3 : Strength Degrading Ratio [0, 1]	0
[ОК

In [OPTION] menu,

- The default steel strength is assumed to be 1.1 times larger than the nominal strength. You can change the ratio in [OPTION] menu.
- Considering the early cracks in reinforced concrete walls, you can reduce the shear stiffness by multiplying a reduction factor. The default value is 0.2.
- Considering openings in a wall element, you can reduce the shear strength by multiplying a reduction factor. The default value is 1.0.
- For nonlinear flexural spring, you can select from 1) the model with independent springs for Mx, My, and N or 2) MS (multi-spring) model for Mx-My-N nonlinear interaction. The default setting is MS model.

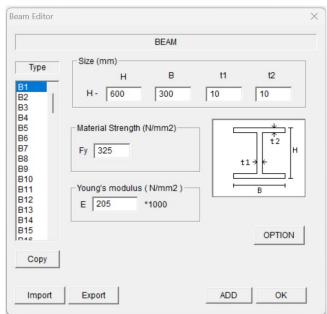

In [OPTION] menu, the parameters to control the shape of hysteresis model are defined as follows:

- R1: the default value of stiffness degrading ratio in the trilinear hysteresis is 0.5. (0: no degradation)
- R2: the default value of slip stiffness ratio in the trilinear hysteresis is 0.0 (0: no slip).
- R3: the default value of strength degrading ratio in the trilinear hysteresis is 0.0.


Please refer "Technical Manual" for the detail.

6.4 Steel Column

- Please select the shape of section from the pull-down menu.
- · Please input the section size.
- For the material strength, Fy, and Young's modulus, E, you can change the default values.
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.
- You can set default values for all members by selecting the last member type "Cdef".
- You can export member data to the text file "Data_column_steel.txt" by [Export] button.
- You can import member data from a text file by [Import] button.
- Please click [OK] to finish.


Steel Option Editor	×
STEEL OPTION	
Amplification Factor for Steel Strength [0, 2]	1.1
Kp/Ky : Stiffness Ratio over Ry [0, 1]	0.001
Buckling	
Not considered	
O Considered R : Effective Slender Ratio	60
Nonlinear Flexural Spring	
O Independent for Mx and My	
• Multi-Spring Model for Mx-My-N Interaction	
	ОК

In [OPTION] menu,

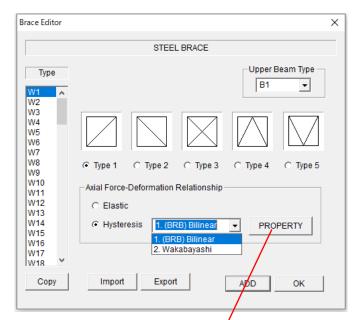
- The default steel strength is assumed to be 1.1 times larger than the nominal strength and the stiffness ratio after yielding is 0.001.
- Non-linear hysteresis due to buckling can be considered. The initial setting is "Not considered". To consider the buckling, you must enter an effective slender ratio.
- For nonlinear flexural spring, you can select from 1) the model with independent springs for Mx and My or 2) MS (multi-spring) model for Mx-My-N nonlinear interaction. The default setting is MS model.

6.5 Steel Beam

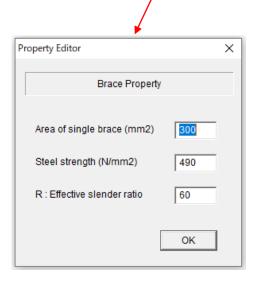
Steel Option Editor	×
STEEL OPTION	
1. Amplification Factor for Steel Strength [0, 2]	1.1
2. Kp/Ky : Stiffness Ratio over Ry [0, 1]	0.001
3. Slab effect to amplify flexural stiffness [0, 2]	1.2
-4. Buckling	
Not considered	
C Considered R : Effective Slender Ratio	60
	ОК

Please input the section size.

-


- For the material strength, Fy, and Young's modulus, E, you can change the default values.
- In [OPTION], you can enter the material properties of the steel beam, slab effects, and buckling considerations.
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.
- You can set default values for all members by selecting the last member type "Bdef".
- You can export member data to the text file "Data_beam_steel.txt" by [Export] button.
- You can import member data from a text file by [Import] button.
- Please click [OK] to finish.

In [OPTION] menu,


- The default steel strength is assumed to be 1.1 times larger than the nominal strength and the stiffness ratio after yielding is 0.001.
- The amplification factor for flexural stiffness because of slab effect is 1.2 for the default value. If the slab is attached both sides of a beam, the value becomes square.
- Non-linear hysteresis due to buckling can be considered. The initial setting is "Not considered". To consider the buckling, you must enter an effective slender ratio.

6.6 Steel Wall (Brace)

*BRB: buckling restrained brace

- If there is a beam upper of Brace element, please select the beam type number from the pop-up menu.
- Please select brace types from the pictures (Type1, 2, 3, 4, 5).
- You can select Axial force deformation relationship from "Elastic" and "Hysteresis". Non-linear hysteresis due to buckling can be selected from "1.(BRB) Bilinear" and "Wakabayashi".
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.
- You can set default values for all members by selecting the last member type "Wdef".
- You can export member data to the text file "Data_brace.txt" by [Export] button.
- You can import member data from a text file by [Import] button.
- Please click [OK] to finish.

In [PROPERTY] menu,

- Please input "Area of single brace", "Steel strength", and "Effective slender ratio".

6.7 SRC (Steel Reinforced Concrete) Column

Column Editor			
COLUMN			
C3 E C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C0py	Size (mm) B 600 d1 40 D 600 d2 40 Main Reiforcement Bar corner $4 - D22 \checkmark$ X-side $2 \checkmark - D22 \checkmark$ (N/mm2) Y-side $2 \checkmark - D22 \checkmark$ SD 295 Shear Reinforcement Bar X-side $2 \checkmark - D13 \checkmark - @ 100 \checkmark$ Y-side $2 \checkmark - D13 \checkmark - @ 100 \checkmark$ SD 295	$\begin{bmatrix} b^{1} \\ tw \\ t$	
Concrete (N/mm2) Fc 24 OPTION			
	Import Export ADD OK		

- RC part is the same as RC Column.
- [OPTION] menu is the same as RC Column.
- Please input Steel size (h1, b1, tw, tf).
- Please input Steel strength (Fy).
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.
- You can set default values for all members by selecting the last member type "Cdef".
- You can export member data to the text file "Data_column_src.txt" by [Export] button.
- You can import member data from a text file by [Import] button.
- Please click [OK] to finish.

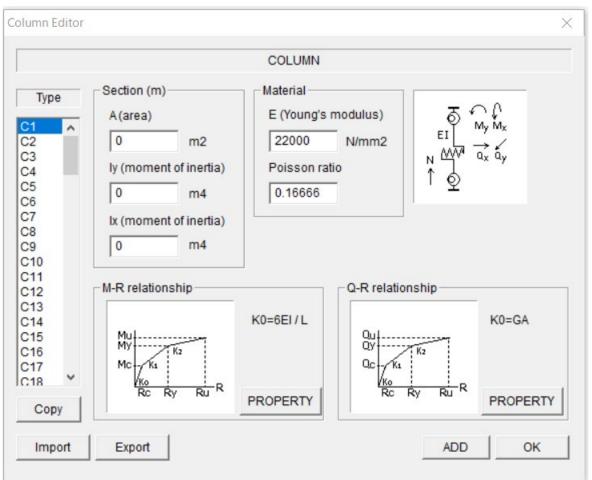
6.8 SRC (Steel Reinforced Concrete) Beam

BEAM	(T)
------	---	---	---

Beam Editor		×
	BEAM	-
Type	Size (mm) B 300 d1 40 D 600 d2 40 S 150 B 150 B 150 B 150 B 150 B 150 B 150 B 100 B 1000 B 10000 B 10000 B 10000 B 10000 B 10000 B 10000 B 10000 B 10000 B 10000 B 100000 B 100000 B $1000000000000000000000000000000000000$	
B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 ♥	Main Reinforcement Bar Size (mm) TOP 2 - D22 w BOTTOM 2 - D22 SD 295 Shear Reinforcement Bar tw 6 tf 9 2 - D13 - @ 150 SD 295	
Сору	Slab Reinforcement Steel (N/mm2) 1 D13 - @ 200 SD 295 Concrete (N/mm2) Fc 24 OPTION	
	Import Export ADD OK	

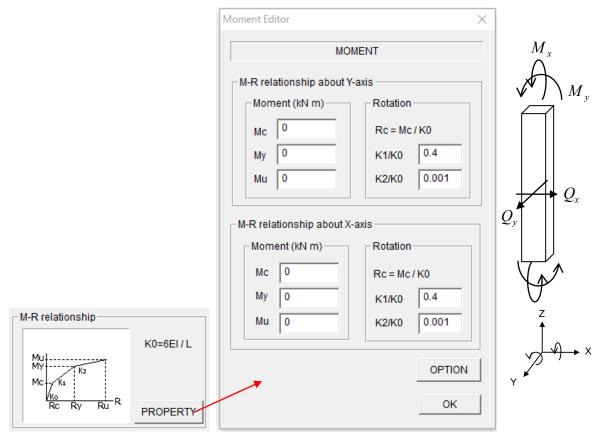
- RC part is the same as RC Beam.
- [OPTION] menu is the same as RC Beam.
- Please input Steel size (h1, b1, tw, tf).
- Please input Steel strength (Fy).
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.
- You can set default values for all members by selecting the last member type "Bdef"
- You can export member data to the text file "Data_beam_src.txt" by [Export] button.
- You can import member data from a text file by [Import] button.
- Please click [OK] to finish.

6.9 SRC (Steel Reinforced Concrete) Wall



Wall Editor	—
WALL	
Type Size W1 150 W2 150 W3 150 W4 150 W5 150 W6 150 W7 1 W7 150 W1 150 W1 150 W1 150 W1 150 W10 Sbear Reinforcement in a Panel W11 12 W12 - W13 150	Steel Brace As (mm2) 10 R (deg.) 30
Copy Concrete (N/mm2) Fc 24	Steel (N/mm2) Fy 325
OPTION	
Import Export ADD OK]

- RC part is the same as RC Wall.
- [OPTION] menu is the same as RC Wall.
- Please input area (As) and angle (R) of the steel brace.
- Please input Steel strength (Fy).
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.
- You can set default values for all members by selecting the last member type "Wdef".
- You can export member data to the text file "Data_wall_src.txt" by [Export] button.
- You can import member data from a text file by [Import] button.
- Please click [OK] to finish.


6.10 Column (Direct input for parameters of hysteresis model)

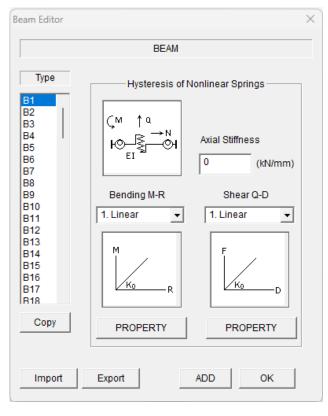
- Please input the area of section (A), the moment of inertia around x and y directions (Iy and Ix), Young's modulus (E), and Poisson's ratio (v) of material that is used for
 - > Axial stiffness of the section EA
 - > Initial flexural stiffness $K_0 = 6EI/L$ (L is the member length)
 - > Initial shear stiffness $K_0 = GA/L$ (G is the shear modulus = 0.5E/(1+v))
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.
- You can set default values for all members by selecting the last member type "Cdef".
- You can export member data to the text file "Data_column_direct.txt" by [Export] button.
- You can import member data from a text file by [Import] button.
- Please click [OK] to finish.

- Please input the parameters of M-R (moment-rotation) relationship by [PROPERTY] bottom.

- Please input parameters for moment (M_y) -rotation relationship about Y axis.
- Please input parameters for moment (M_x) -rotation relationship about X axis.
- [OPTION] button is activated for RC structural type. From [OPTION] dialog, you can set the parameters for hysteresis model as follows:

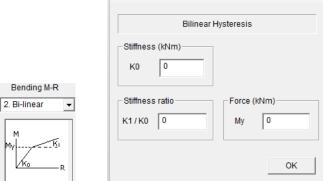
RC Option Editor		\times
OPTION OF HYSTERESIS MODEL		_
R1 : Stiffness Degrading Ratio [0, 1]	0.5	
R2 : Slip Stiffness Ratio [0, 1]	0	
R3 : Strength Degrading Ratio [0, 1]	0	
	ОК	

- Please input the parameters of Q-R (shear-rotation) relationship by [PROPERTY] bottom.


	Shear Editor	×
	s	SHEAR
	Q-R relationship about	X-axis
	Shear (kN)	Rotation
	Qc 0	Rc = Qc / K0
	Qy 0	K1/K0 0.4
	Qu 0	K2/K0 0.001
	⊂ Q-R relationship about	Y-axis Rotation
	Qc 0	Rc = Qc / K0
	Qy 0	K1/K0 0.4
Q-R relationship K0=GA	Qu 0	K2/K0 0.001
		OPTION
RC RY RU R PROPERTY		OK

- Please input parameters for shear (Q_x) -rotation relationship in X axis.
- Please input parameters for shear (Q_y) -rotation relationship in Y axis.
- [OPTION] button is activated for RC structural type. From [OPTION] dialog, you can set the parameters for hysteresis model as follows:

RC Option Editor		×
OPTION OF HYSTERESIS MODE	L	_
R1 : Stiffness Degrading Ratio [0, 1]	0.5	
R2 : Slip Stiffness Ratio [0, 1]	0	
R3 : Strength Degrading Ratio [0, 1]	0	
	ОК	


6.11 Beam (Direct input for parameters of hysteresis model)

[1] Bending M-R

- It consists of bending springs, shear spring, and axial spring.
- Please input the axial stiffness directly.
- Please select hysteresis types for shear and bending springs from the pull-down menu.
- You can input the parameters of the hysteresis in [PROPERTY] view.
- You can set default values for all members by selecting the last member type "Bdef".
- You can export member data to the text file "Data_beam_direct.txt" by [Export] button.
 - You can import member data from a text file by [Import] button.

-

	Property Editor	×
	Degrading Trili	inear Hysteresis
	Stiffness (kNm) K0 0	
	Stiffness ratio	Force (kNm)
	К1/К0 0	Mc 0
	K2/K0 0	Му 0
	К3/К0 0	Mu 0
	Hysteresis control param	eters
Bending M-R	Stiffness Degrading Ra	tio [0, 1] 0.5
3. D-Trilinear 💌	Slip Stiffness Ratio [0, 1] 0
	Strength Degrading Rat	io [0, 1] 0
KoR		ок

[2] Shear Q-D

Linear

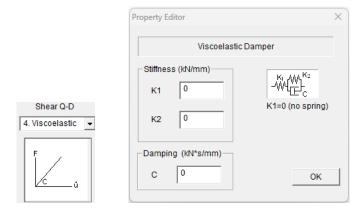
Obarro D	Property Editor	×
Shear Q-D	Elastic Spring	
	Elastic Spring	
F Ko D	Stiffness (kN/mm)	ОК

Bi-linear

	Property Editor	×
	Bilinear Hysteresi	S
	K0 0	
Shear Q-D 2. Bi-linear	Stiffness ratio	e (KN)
		ок

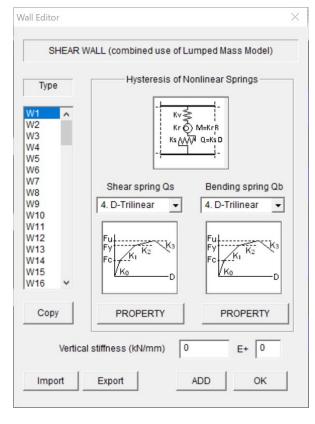
D-Trilinear

Stiffness (kN/mm) K0 0 Stiffness ratio Force (kN) K1 / K0 0 Fc 0 K2 / K0 0 Fy 0 K3 / K0 0 Fu 0 Hysteresis control parameters Stiffness Degrading Ratio [0, 1] 0.5 Slip Stiffness Ratio [0, 1] 0		Degrading Tril	inear Hyste	eresis
Stiffness ratio K1 / K0 0 K2 / K0 0 K3 / K0 0 Hysteresis control parameters Stiffness Degrading Ratio [0, 1] 0.5	Stiffness	(kN/mm)		
K1 / K0 0 Fc 0 K2 / K0 0 Fy 0 K3 / K0 0 Fu 0 Hysteresis control parameters Stiffness Degrading Ratio [0, 1] 0.5	K0	0		
K17K0 P Fc F K2 / K0 0 Fu 0 K3 / K0 0 Fu 0 Hysteresis control parameters Stiffness Degrading Ratio [0, 1] 0.5	Stiffness	ratio	Force	(kN)
K3 / K0 0 Fu 0 Hysteresis control parameters Stiffness Degrading Ratio [0, 1] 0.5	K1/K0	0	Fc	0
Hysteresis control parameters Stiffness Degrading Ratio [0, 1]	K2/K0	0	Fy	0
Stiffness Degrading Ratio [0, 1]	K3/K0	0	Fu	0
	Hysteres	is control param	ieters	
Slip Stiffness Ratio [0, 1]	Stiffnes	s Degrading Ra	tio [0, 1]	0.5
	Slip Stit	fness Ratio [0, 1	1	0
Strength Degrading Ratio [0, 1]	Strengt	h Degrading Rai	io [0, 1]	0

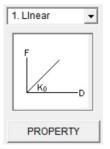

Viscoelastic

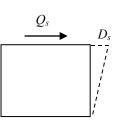
Shear Q-D 3. D-Trilinear

u

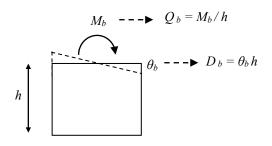

•

K1 K2 K3



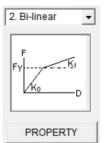

6.12 Wall (Direct input for parameters of hysteresis model)

[1] Linear model



Shear spring $(Q_s - D_s)$

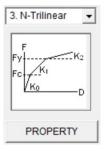
Property	Editor	×
	Elastic Spring	
- Stiffne K0	ess (kN/mm)	ОК


- It consists of shear spring, bending spring and axial spring.
- Please select hysteresis types for shear and bending springs from the pull-down menu.
- You can input the parameters of the hysteresis in [PROPERTY] view.
- Please input vertical stiffness directly.
- You can set default values for all members by selecting the last member type "Ddef".
- You can export member data to the text file "Data_wall_direct.txt" by [Export] button.
- You can import member data from a text file by [Import] button.

Bending spring $(Q_b - D_b)$

Property Editor	\times
Elastic Spring	
Stiffness (kN/mm)	
K0 0 E+ 0	
ОК	

[2] Bi-linear model

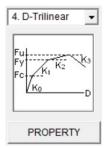

Shear spring (Qs -Ds)

Bilinear	Hysteresis	
Stiffness (kN/mm)		
Stiffness ratio	Force (kN)	

Bending spring $(Q_b - D_b)$

	Bilinear Hysteresis
Stiffness (kN/mm)-	
ко 0	E+ 0
Stiffness ratio	Force (kN)
K1/K0 0	Qby 0 E+ 0

[3] Normal-Trilinear model


Shear spring (Qs -Ds)

Trilinea	r Hysteresis
Stiffness (kN/mm)	٦
ко 0	
Stiffness ratio	Force (kN)
K1/K0 0	Fc 0
K2/K0 0	Fy 0

Property Editor \times Trilinear Hysteresis Stiffness (kN/mm) E+ 0 0 K0 Stiffness ratio Force (kN) 0 К1/К0 0 E+ 0 Qbc K2/K0 0 0 E+ 0 Qby OK

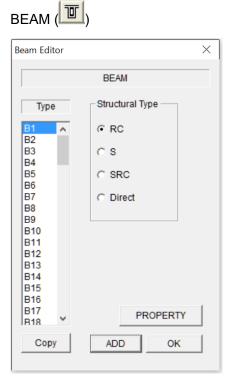
Bending spring $(Q_b - D_b)$

[4] Degrading Trilinear model

Shear spring (Qs -Ds)

Property Editor		×
Degrading Trilir	near Hyste	eresis
Stiffness (kN/mm)		
Stiffness ratio	Force	(KN)
К1/К0 0	Fc	0
K2/K0 0	Fy	0
K3/K0 0	Fu	0
Hysteresis control parame	eters	
Stiffness Degrading Rati	o [0, 1]	0.5
Slip Stiffness Ratio [0, 1] 0		0
Strength Degrading Ratio	o [0, 1]	0
		ОК

Bending spring $(Q_b - D_b)$


Deg	rading Trilinea	ar Hystere	sis	
Stiffness (kN/mm) —				
ко 0	E+ 0			
Stiffness ratio	Force (<n)< td=""><td></td><td></td></n)<>		
к1/к0 0	Qbc	0	E+ 0)
к2/К0 0	Qby	0	E+ 0)
КЗ/КО 0	Qbu	0	E+ 0)
Hysteresis control par	ameters			
Stiffness Degrading	Ratio [0, 1]	0.5		
Slip Stiffness Ratio [0, 1]	0		
Strength Degrading	Ratio [0, 1]	0		

6.13 Column (Mixed mode)

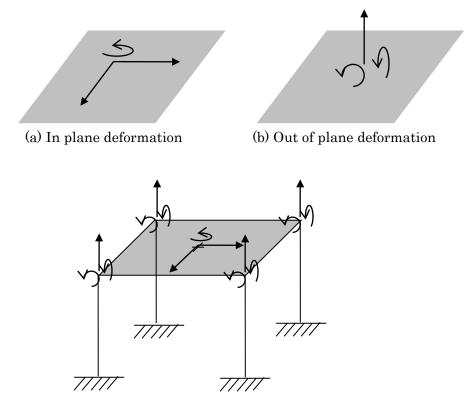
Column Editor	×
	COLUMN
Туре	Structural Type
C1 ^ C2	RC R
C3 C4	CS
C5 C6	C SRC
C7 C8	C Direct
C9	
C10 C11	
C12 C13	
C14 C15	
C16 C17	PROPERTY
C18 ¥	
Сору	ADD OK

6.14 Beam (Mixed mode)

- You can select different "Structural Type" for each member type (C1, C2, ...).
- You can input member properties by [PROPERTY] button.
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.
- You can set default values for all members by selecting the last member type "Cdef".

- You can select different "Structural Type" for each member type (B1, B2, ...).
- You can input member properties by [PROPERTY] button.
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.
- You can set default values for all members by selecting the last member type "Bdef".

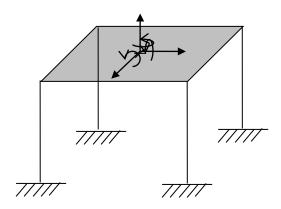
6.15 Wall (Mixed mode)



Wall Editor	×	
WALL		
Туре	Structural Type	
W1 ^	· RC	
W2 W3 W4	C S	
W5 W6	C SRC	
W7 W8	C Direct	
W9 W10		
W11 W12		
W13 W14		
W15 W16		
W17 W18 ¥	PROPERTY	
Сору	ADD OK	

- You can select different "Structural Type" for each member type (W1, W2, ...).
- You can input member properties by [PROPERTY] button.
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.
- You can set default values for all members by selecting the last member type "Wdef".

6.16 Floor Slab (2D Rigid)


- Rigid for in plane deformation and free for out-of-plane deformation. In plane deformations at nodes are dependent to those of center of gravity.

(c) Independent freedom for 2D Rigid

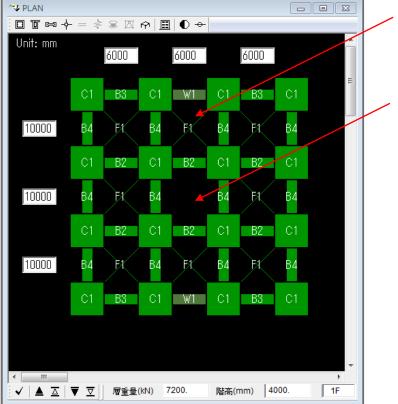
6.17 Floor Slab (3D Rigid)

- Rigid for all directional deformation. Deformations at nodes are dependent to those of center of gravity.

(d) Independent freedom for 3D Rigid

6.18 Floor Slab (Flexible)

Elastic: elastic for in plane deformation and free for out-of-plane deformation.


_

-

-

Please input thickness and concrete strength.

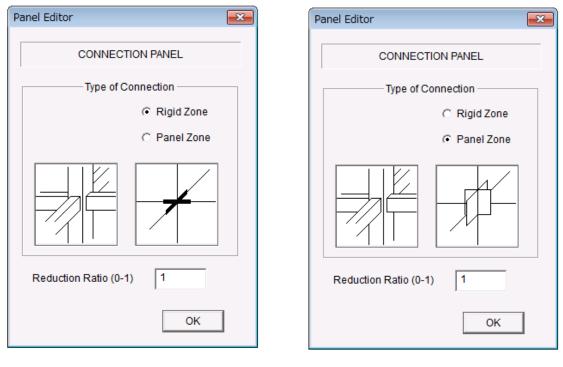
- **Rigid**: the selected slab will be rigid both in plane and out-of-plane. You can set the restrained freedom of the partial rigid slab at the center of gravity.
- You can set default values for all members by selecting the last member type "Fdef".

You can set member number (F1~F100).

By clicking the slab, you can remove it. If you click it again, the slab will appear.

6.19 Floor Slab (Mix)

SLAB (


Beam Editor	—
	FLOOR SLAB
Floor Floor FF F F F F F F F F F F F F	Slab Type © 2D Rigid (rigid plane) © 3D Rigid © Flexible PROPERTY ADD OK

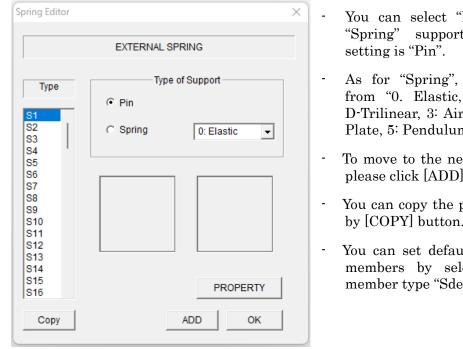
-

- You can select different "Slab Type" for each floor (BF, 1F, 2F, ...).
- In case of "Flexible", you can input member properties by [PROPERTY] button.
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.

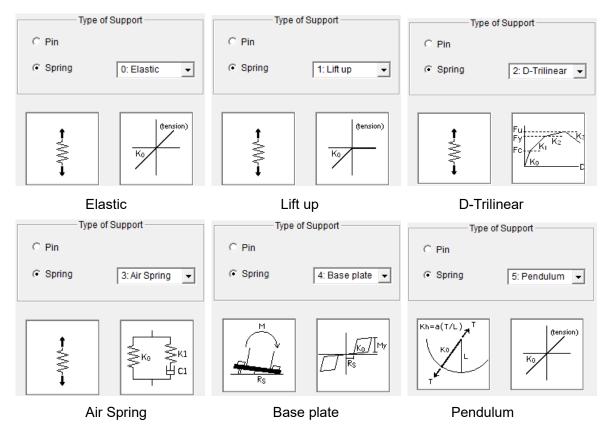
6.20 Connection Panel

CONNECTION PANEL (+)

Panel Zone


You can set the ratio of the length of rigid zone or panel zone inside connection area. The default value is 1.0 (to the member face).

6.21 **External Spring**


EXTERNAL SPRING (

(NOTE: only available at the Basement Floor or you

select External Spring in Option menu. Default is PIN)

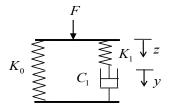
- You can select "Pin" support or "Spring" support. The default
- As for "Spring", you can select from "0. Elastic, 1. Lift up, 2: D-Trilinear, 3: Air Spring, 4: Base Plate, 5: Pendulum".
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.
- You can set default values for all members by selecting the last member type "Sdef".

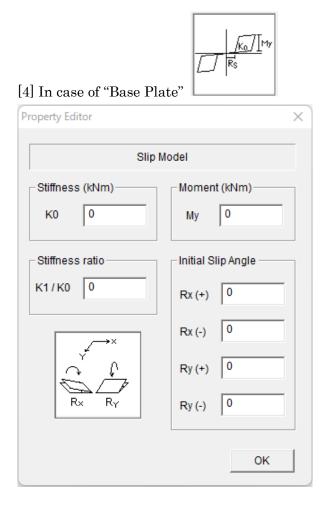
Elastic Sprin	ng
Stiffness (kN/mm) K0	ОК

Fu Fy Fc K₀ K₂ K₃ Fc K₀ D

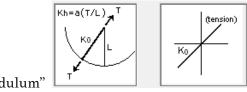
[2] In case of "D-Trilinear"

Property Editor		×		
Degrading Trilinear Hysteresis				
Stiffness (kN/mm)	7			
ко 0				
Stiffness ratio	-Force (kN)		
К1/К0 0	Fc	0		
К2/К0 0	Fy	0		
K3/K0 0	Fu	0		
Hysteresis control parameters				
Stiffness Degrading Ratio [0, 1] 0.5				
Slip Stiffness Ratio [0, 1]				
Strength Degrading Ratio [0, 1]				
		ОК		


- Please input spring properties from the [PROPERTY] menu.


[3] In case of "Air Spring	
Property Editor	×
Air Dar	mper
Stiffness 1 (kN/mm)	Stiffness 2 (kN/mm)
	Damping (kN*s/mm) C1 0
	NonInear Parameter
damping force = C1 V B	В 0
	ОК

- Please input spring properties from the [PROPERTY] menu.


The air spring force is expressed as $F = K_1(z - y) + K_0 z$ $K_1(z - y) = C_1 \cdot \dot{y}^B$

Please refer "Technical Manual" for the detail.

- Please input spring properties from the [PROPERTY] menu.

[5] In case of "Pendulum"

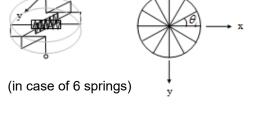
Property Editor	×
Pendulum Spring	
 K0 : Axial Stiffness (kN/mm) a : Horizontal Stiffness Ratio [0, 2] (Horizontal Stiffness Kh = a (T/L)) 	0
	ОК

Please input spring properties from the [PROPERTY] menu.

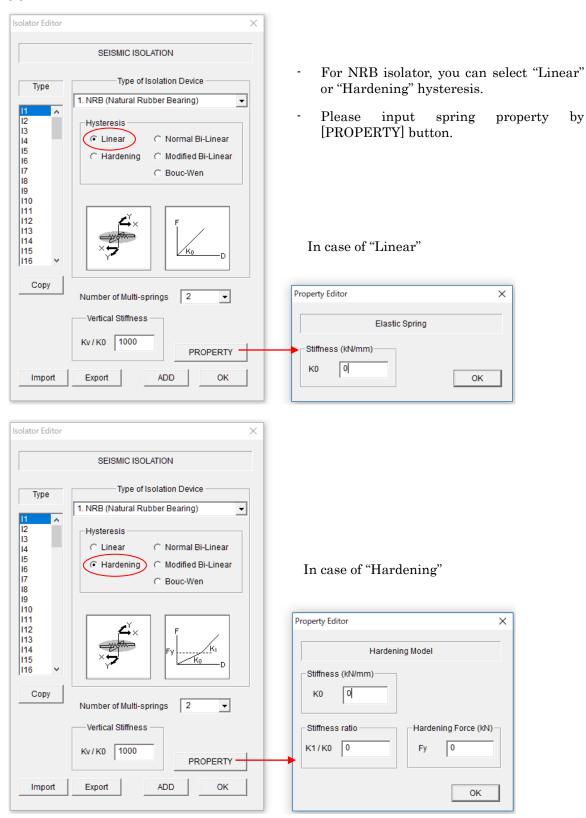
-

6.22 Seismic Isolator

ISOLATOR (S) (NOTE: only available when you select Isolator in Option menu)


Isolator Editor	×	Isolator Editor	×
	SEISMIC ISOLATION	SEISMIC ISOLATION	-
Туре	Type of Isolation Device	Type Type of Isolation Device	1
	1. NRB (Natural Rubber Bearing)	1. NRB (Natural Rubber Bearing)	
11 12 13 14 15 16 17 18 19 110	Hysteresis C Linear C Hardening C FPB C Bouc-Wen	11 1. NRB (Natural Rubber Bearing) 12 2. LRB (Lead Rubber Bearing) 13 3: HDRB (High Damping Rubber Bearing) 14 4: Lead Damper 15 5: Elastic Slide Bearing 16 6: FPB (Friction Pendulum Bearing) 17 7: Original Isolator 19 10	
110 111 112 113 114 115 116		111 112 113 114 115 116	
Сору	Number of Multi-springs 2	Copy Number of Multi-springs 2	
	Vertical Stiffness	Vertical Stiffness	
	Kv / K0 1000 PROPERTY	Kv / K0 1000 PROPERTY	
Import	Export ADD OK	Import Export ADD OK	

You can select Isolator device from the pull-down menu:


- 1. NRB (Natural Rubber Bearing)
- 2. LRB (Lead Rubber Bearing)
- 3. HDRB (High Damping Rubber Bearing)
- 4. Lead Damper
- 5. Elastic Slide Bearing
- 6. FPB (Friction Pendulum Bearing)
- 7. Original Isolator

Please read "STERA3D_technical_manual" about the detail of each device.

- The default value of the ratio between vertical stiffness, K_{V} , and the horizontal stiffness, K_{0} , is 1000.
- You can select the number of multi-springs from the pull-down menu (2, 4, 6, 8, 10).
- You can set default values for all members by selecting the last member type "Idef".
- You can export member data to the text file "Data_isolator.txt" by [Export] button.
- You can import member data from a text file by [Import] button.
- Please click [OK] to finish.

[1] NRB Isolator

[2] LRB Isolator

Isolator Editor	×	- For LRB isolator
	SEISMIC ISOLATION	Bi-Linear" or hysteresis.
Type	Type of Isolation Device 2. LRB (Lead Rubber Bearing) Hysteresis C Linear C Hardening C Modified Bi-Linear C Bouc-Wen	- Please input [PROPERTY] bu In case of "Normal
111 112 113 114 115 116 V		Property Editor Bilinear Hyste
Сору	Number of Multi-springs 2	ко
	Vertical Stiffness Kv / K0 1000 PROPERTY	Stiffness ratio
Import	Export ADD OK	

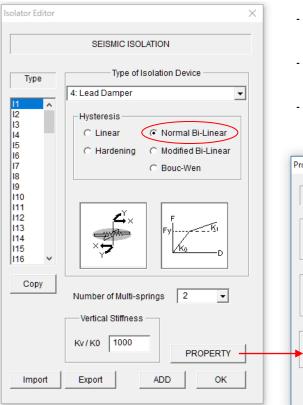
In case of "Modified Bi-Linear"

- r, you can select "Normal "Modified Bi-Linear"
- spring property by tton.

Bi-Linear"

Bilinea	r Hysteresis
K0 0	
Stiffness ratio	Force (kN) Fy 0
	ОК

In case of "Modified Bi-Linear" hysteresis, you can consider strength reduction by energy dissipation.

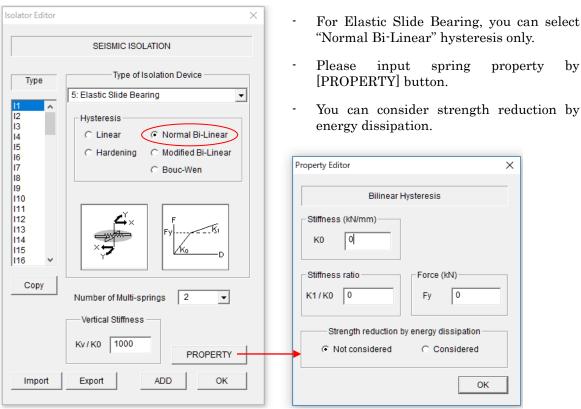

Isolator Editor	X		
	SEISMIC ISOLATION	Property Editor	×
Туре	Type of Isolation Device	Modified Bilinear Hysteresis f	for LRB
11	2. LRB (Lead Rubber Bearing)	K2 (=Kr+Kn) 0	tiffness of rubber
12 13 14	C Linear C Normal Bi-Linear	Initial stiffness (K1) ratio	stiffness of lead plug
15 16 17	C Hardening C Modified Bi-Linear	K1/K2 0	
18 19 110 111 112		Out outland 0	ield stress of lead wea of lead plug
113 114 115 116 ❤		Height of rubber (mm) Hr 0	
Сору	Number of Multi-springs 2	Strength reduction by energy dissipation of the considered Considered Considered	
	Vertical Stiffness	Dp: Diameter of lead plug (mm)	
	Kv / K0 1000 PROPERTY	Hp: Height of lead plug (mm) 0	
Import	Export ADD OK		ОК

-

Isolator Editor × SEISMIC ISOLATION Type Type 3: HDRB (High Damping Rubber Bearing) Hysteresis 13 14 15	 For HDRB isolator, you can select "Modified Bi-Linear" hysteresis only. Please input spring property by [PROPERTY] button. You can consider strength reduction by energy dissipation.
IG Import F Modified Bi-Linear IF IF Bouc-Wen IF Import Import Import Import Export ADD OK	Property Editor × Modified Bilinear Hysteresis for HDRB Diameter of isolator (mm) Dr 0 Height of rubber (mm) Hr 0 Strength reduction by energy dissipation (* Not considered OK

[3] HDRB (High Damping Rubber Bearing) Isolator

[4] Lead Damper



- For Lead Damper, you can select "Normal Bi-Linear" hysteresis only.
- input Please spring property by [PROPERTY] button.
- You can consider strength reduction by energy dissipation.

by

roperty Editor	×
Bilinear H	ysteresis
Stiffness (kN/mm)	
Stiffness ratio	Force (kN)
Strength reduction b	
	ОК

[5] Elastic Slide Bearing

Isolator Editor

[6] FPB (Friction Pendulum Bearing)

- Please input spring property by [PROPERTY] button.
- If you want to pre-set the frictional bearing capacity, specify the vertical load W.

		capacity, specify the vertical load w.
	SEISMIC ISOLATION	Property Editor ×
Туре	Type of Isolation Device	FPB (Friction Pendulum Bearing) Hysteresis Model
11 12 13 14 15 16 17 18 19	Hysteresis C Linear C Normal Bi-Linear C Hardening C Modified Bi-Linear FPB C Bouc-Wen	© Single © Double © Triple
19 110 111 112 113 114 115 116 Copy	Number of Multi-springs 2	Parameters of each sliding surface Surface 1 Surface 2,3 Surface 4 µ : friction coefficient 0 0 0 R : radius (mm) 0 0 0 h : height (mm) 0 0 0 d : disp. capacity (mm) 0 0 0
Immed	Vertical Stiffness	Vertical load to calculate friction force
Import	Export ADD OK	ОК

×

In case of Double,

 ○ Single ○ Double ○ Triple 	R4, µ4		
Farameters of each shu	-		
	Surface 1	Surface 2,3	Sufface 4
$\boldsymbol{\mu}$: friction coefficient	0	0	0
R:radius (mm)	0	0	0
h : height (mm)	0	0	0
d : disp. capacity (mm)	0	0	0

In case of Triple

○ Single○ Double○ Triple	R4, µ4 R3,		= [h3]h4 [h2]h1 =
Parameters of each slid	ing surface		
	Surface 1	Surface 2,3	Surface 4
$\boldsymbol{\mu}$: friction coefficient	0	0	0
R:radius (mm)	0	0	0
h : height (mm)	0	0	0
d : disp. capacity (mm)	0	0	0

[7] Original Isolator

- If you want to use your original isolator device, please select "Original Isolator". You can select the hysteresis from "Linear", "Normal Bi-Linear", and "Bouc-Wen".
- Please input spring property by [PROPERTY] button.

Isolator Editor X	In case of "Bouc-Wen"
SEISMIC ISOLATION	In case of Bouc wen
SEISMIC ISOLATION Type Type of Isolation Device Copy	Property Editor × Bouc Wen Hysteresis Model
Number of Multi-springs 2	A 1
KV/K0 1000 PROPERTY	D_A 0 D_Myu 0 D_Eta 0
Import Export ADD OK	ОК

Definition of Bouc-Wen Model (Please refer "Technical Manual" for the detail.) $f = \alpha k_0 x + (1 - \alpha) k_0 z$ $\dot{z} = \frac{A\dot{x} - \left\{\beta |\dot{x}||z|^{N-1}z + \gamma \dot{x}|z|^N\right\} v}{\eta}$ $A = A_0 - \delta_A e, \quad v = 1 + \delta_v e, \quad \eta = 1 + \delta_\eta e$

Alpha = α , Beta = β , Gamma = γ A = A_0 D_A = δ_A , D_Myu = δ_v , D_Eta= δ_η ,

6.23 Passive Damper

PASSIVE DAMPER (

(NOTE: only available when you select Passive Damper

in Option menu)

Damper Editor		×
	PASSIVE DAME	PER
	TAGONE DAM	ER
Type	Type of S	Upper Beam Type rigid
D4 D5 D6 D7 D8 D9 D10	C Hysteresis C Viscous	1. Bilinear 🗸
D11 D12 D13 D14 D15 D16 ¥		F Ko D
Сору		PROPERTY
Import	Export	ADD OK

[1] Elastic spring

Type of Shear Spring		
 Elastic 		
C Hysteresis	1. Bilinear 🔻	
O Viscous	1. Oil 🗨	
	F K ₀ D	

- Please select damper type from Elastic, Hysteresis and Viscous and its detail characteristics from the pull down menu.

- If there is a reinforcement concrete beam upper of Damper, please select the upper beam type number from the pop-up menu. The default is "rigid beam".

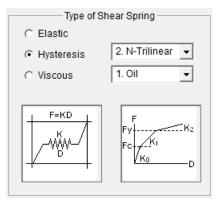
- You can set default values for all members by selecting the last member type "Ddef".

- You can export member data to the text file "Data_damper.txt" by [Export] button.

- You can import member data from a text file by [Import] button.

- You can input the detail characteristic of the Damper in [PROPERTY] view.

- Please click [OK] to finish.

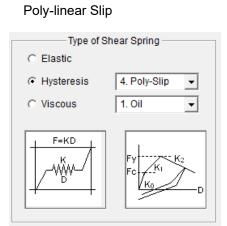

Property Editor	×
Elastic Spring	
Stiffness (kN/mm) K0 0	ОК

[2] Hysteresis Dampers

Bilinear

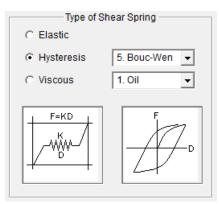
Type of Shear Spring		
C Elastic		
 Hysteresis 	1. Bilinear 💌	
O Viscous	1. Oil 🗨	
	Fy Fy Ko D	

Normal Trilinear

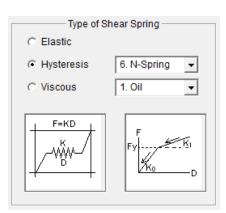

Degrading Trilinear

Type of	Shear Spring
C Elastic	
 Hysteresis 	3. D-Trilinear 💌
C Viscous	1. Oil 💌
	Fu Fy Fc K ₀ D

Property Editor	×
Bilinear Hysteresis	
Stiffness (kN/mm) K0 0	
Stiffness ratio Force (kN) K1 / K0 0 Fy 0	

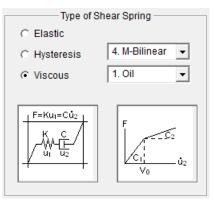

Property Editor		
Trilinear Hysteresis		
Stiffness (kN/mm)		
Stiffness ratio	Force (kN)	
К1/К0 0	Fc 0	
К2/К0 0	Fy 0	
	ОК	

Deg	rading Trilinear Hy	ysteresis
Stiffness (kN/n	nm)	
К0 0		
Stiffness ratio	For	ce (kN)
к1/ко 0	Fo	0
К2/К0 0	Fy	0
КЗ/КО 0	Fu	0
Hysteresis con	trol parameters	
Stiffness Deg	rading Ratio [0, 1]	0.5
Slip Stiffness	Ratio [0, 1]	0
Strength Deg	rading Ratio [0, 1]	0


Property Edit	tor			Х
	Poly-linear S	Slip Hystere:	sis	
Stiffness	(kN/mm)			
Stiffness	ratio	-Force (kN)	_
К1/К0	0	Fc	0	
K2/K0	0	Fy	0	
Numeric	al Integration Me	ethod		
Average	 Average Acceleration (ignore negative stiffness) 			
C Opera	ator Splitting (wit	h negative s	tiffness)	
			OK	

Bouc-Wen

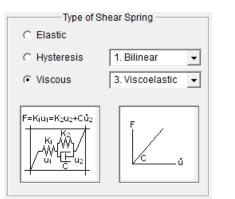
Property Editor
Bouc Wen Hysteresis Model
Stiffness (kN/mm)
K0 0 Fy 0
Parameters to control loop shape
N 2
Alpha 0.01 Beta 0.5 Gamma 0.5
Parameters to control material degradation
A 1
D_A 0 D_Myu 0 D_Eta 0
ок

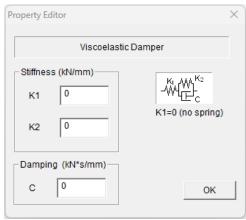

Nonlinear Spring (without hysteresis)

Dinite	ear Hysteresis	
Stiffness (kN/mm)—	_	
K0 0		
Stiffness ratio	Force (kN))
К1/К0 0	Fy	0

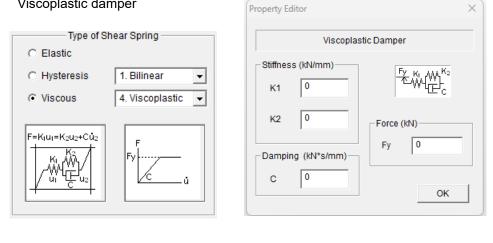
[3] Viscous Dampers

Oil damper

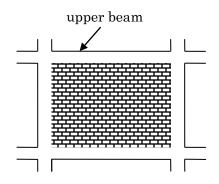

Property Editor
Oil Damper
Stiffness (kN/mm)
Damping (kN*s/mm) Releaf velocity (mm/s) C1 0 V0 0
C2 / C1 0 OK


Viscous damper

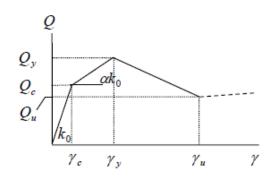
Type of Shear Spring		
C Elastic		
C Hysteresis	4. M-Bilinear 💌	
Viscous	2. Viscous 💌	
	$F = C \dot{u}_2 ^a$ $f = 0.0$ $f = 0.0$ $f = 0.1$ $f = 0.1$ $f = 0.1$ $f = 0.4$ $f = 0.4$	


Property Editor				
Viscous Damper				
Stiffness (kN/mm)				
Damping (kN*s/mm) Exponent				
C 0 a 0				
ОК				

Viscoelastic damper


Viscoplastic damper

6.24 Masonry Wall


lasonry Edit	× ro			
MASONRY WALL				
Type M1 ^ M2 M3 M4 M5 M6	Size (mm) Hb (brick) 60 tb (brick) 100 He (model)			
M7 M8 M9 M10 M11 M12 M13	Compression Strength (N/mm2) Fcb (brick) 7.5			
M14 M15 M16 V	Fcm (mortal) 5			
Сору	OPTION			
Import	Export ADD OK			

- MASONRY (=) (NOTE: only available when you select Masonry in Option menu)
 - Please input the size of brick unit and thickness of mortal and compression strength of these materials.
 - If there is a reinforcement concrete beam upper of Masonry Wall as shown below, please select the upper beam type number from the pop-up menu. The default is "rigid beam".

- You can set default values for all members by selecting the last member type "Mdef".
- You can export member data to the text file "Data_masonry.txt" by [Export] button.
- You can import member data from a text file by [Import] button.
- Please click [OK] to finish.

Masonry Option Editor	×			
MASONRY WALL OPTION				
1. Stiffness Modification Factor				
2. Strength Modification Factor				
Compressive Strength of Masonry Prism				
Pauley and Priestley 1992				
C Eurocode 6 : fm = k * Fcb ^a * Fcm ^b				
k 0.5 a 0.7 b 0.3				
Numerical Integration Method				
 Average Acceleration (ignore negative stiffness) 				
C Operator Splitting (with negative stiffness)				
ОК				

- You can modify the stiffness and shear strength by multiplying modification factors in [OPTION] menu. The default values are 1.0.
- You can select the formula of compression strength of masonry prism from:
 - Pauley and Priestley 1992
 - \succ Eurocode 6

-

-

See the technical manual for details.

- Since the backbone curve of the shear spring has the negative stiffness after yielding, you can identify the numerical integration method in earthquake response analysis from:
 - Average Acceleration method
 - > Operator Splitting method.

6.25 Ground Spring (Cone model)

GROUND SPRING (

(NOTE: only available when you select Cone model in

Option menu)

Ground Spring Edi	tor	×
	GROUND SPRING	
Layer G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13	Soil Layers H: Thickness of layer (m) G = r Vs2 (input any two values) G0 : Shear Modulus (ktN/m2) r : Unit Weight (t/m3) 1.4 Vs : S Wave Velocity (m/s) 120 (Vp/Vs)2 = 2(1-p)/(1-2p) (input any one value) Vp : P Wave Velocity (m/s) 360 p : Poisson Ratio	Foundation x3 y X1 x1 x2 x1 x3 x1 x1 x1 x2 x1 x3 y x1 x1 x1 x1 x2 x1 x3 y y y
G14 V Copy	Gr/G0 : Reduction factor of G 0.64 h : Critical Damping Ratio 0.095 ADD Engineering Bedrock G6	Basement Weight Radiation Damping

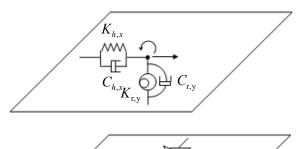
- Please input thickness and soil properties in each layer.
- Since the relationship $G_0 = rV_s^2$ holds, if any two variables are input, the remaining variable is automatically calculated.
- Also, since the relationship $\frac{V_p^2}{V_s^2} = \frac{2(1-p)}{(1-2p)}$ holds, if any one variable except V_s is

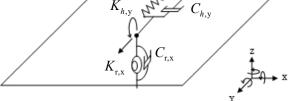
input, the remaining variable is automatically calculated.

- Please input the size of foundation.
- Please input the number of the layer which is regarded as an engineering bedrock.
- Please input the properties of piles by [Pile] button.
- Please input the weight the basement by [Basement Weight] button.
- Please select "Radiation Damping" to consider or not.
- To move to the next layer, please click [ADD] button.
- You can copy the previous layer by [COPY] button.
- You can set default values for all layers by selecting the last layer type "Gdef".
- You can export layer data to the text file "Data_ground_cone.txt" by [Export] button.
- You can import layer data from a text file by [Import] button.
- Please click [OK] to finish.

When you click [Pile] button, the input window of pile location and property appears.

Pile Editor		;
	Pile	
	Size of Basement (r X1 30 Pile Space (m) Sx 0 Number of Piles Nx 0	m) X2 30 Sy 0 Ny 0
Average Propety of Plle		
Diameter (m2)	0	
Length (m)	0	
Area (m2)	0	
Moment of Inertia (m4) 0	
E (N/mm2)	0	*1000


When you click [Basement Weight] Button, the input window of basement weight appears.

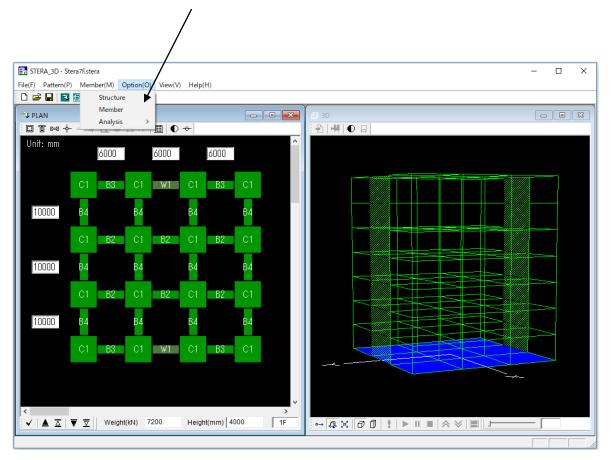

Property Edito	r X
	Basement Weight
around Y axis X axis	Weight (kN)
	ОК

6.26 Ground Spring (Direct)

GROUND SPRING () (NOTE: only available when you select Direct in Option menu)

Ground Spring	Editor	×
	GROUND SPRING	
Sway Spri	ng	
	Kh: Stiffness (kN/m) Ch: Damp. Co, (kNs/m)	1
X direc.	0 E+ 0 0 E+ 0	
Y direc.	0 E+ 0 0 E+ 0	
-Rocking S	pring	
	_Kr: Stiffness (kNm/rad) Cr: Damp. Co, (kNms/rad)	1
X direc.	0 E+ 0 0 E+ 0	
Y direc.		
		_
Import	Export Basement Weight OK	

- Please input Sway spring properties K_h , C_h and Rocking spring properties K_r , C_r in each direction.
- By [Basement Weight] button, please input the weight and rotational inertia weight of the basement.
- You can export member data to the text file "Data_ground_direct.txt" by [Export] button.
- You can import member data from a text file by [Import] button.
- Please click [OK] to finish.


7 Initial Setting of Analysis Condition

7.1 Restrained freedom, Rigid floor, P-Delta effect, Mass distribution

In the default condition,

- The number of freedom at each node is eight including three horizontal deformations, three rotational deformations and two shear deformations.
- The P-Delta effect for column and wall elements is not considered.
- The mass of floor is distributed in proportion to influence area

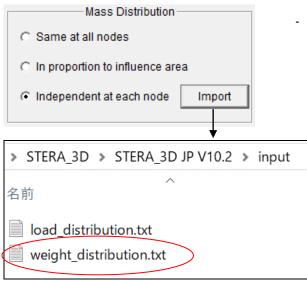
To change the default condition, please select "Option" in the main menu and select "Structure" from the pull down menu.

Option → Structure

O	ption for Structure	
[1	Free Restrained freedom number 0 1(Ux), 2(Uy), 3(Uz) : lateral freedom 4(Rx), 5(Ry), 6(Rz) : rotation freedom 7(Gx), 8(Gy) : shear rotation freedom	dom Example 2467 X-direction only 1568 Y-direction only 45678 no rotation freedom 78 rigid connection
[2	P-Delta Effect	Mass Distribution Same at all nodes In proportion to influence area Independent at each node Import

[1] Restrained freedom number

Please indicate the freedom numbers to be restrained.


[2] P-Delta Effect

Considered \rightarrow P-Delta effect is considered in element stiffness matrix of column and wall.

[3] Mass distribution at nodes in a floor

Please select from:

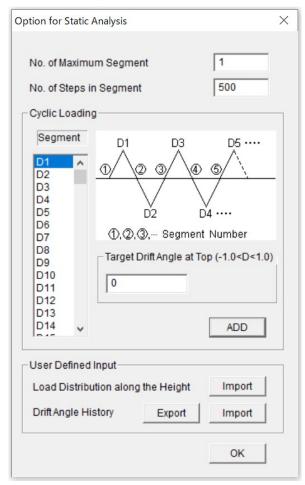
- Same at all nodes
- In proportion to influence area (default)
- Independent at each node

Independent at each node By clicking "Import" button, please select the file of the weight distribution.

- After the initial analysis (see Chapter 8.1), the file "weight_distribution.txt" is automatically created in the "input" folder. When you want to set different weight at each node, please modify this file and rename it.

weight_di	stribution.txt - メモ	帳			×
ファイル(F)	編集(E) 書式(O)	表示(V) ヘルプ(H)	Weight (N)	at node (Column	position)
Weight on	each node (N)				Â
	200000	400000	400000	200000	
Floor	400000 400000	800000 800000	800000 800000	400000 400000	
1	200000	400000	400000	200000	
	200000	400000	400000	200000	
	400000 400000	800000 800000	800000 800000	400000 400000	
2	200000	400000	400000	200000	
2	200000	400000	400000	200000	
	400000	800000	800000	400000	

7.2 Condition of static analysis


In the default condition,

- Static push over analysis will be done with 500 steps until the target drift (or force).

To change the default condition, please select "Option" in the main menu and select "Analysis" and "Static" from the pull down menu.

Option \rightarrow Analysis \rightarrow Static

Cyclic loading is possible by setting the target drift angle at the top of a building in each loading segment.

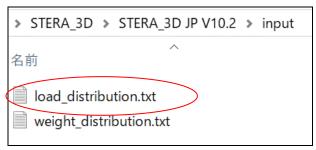
No. of Maximum Segment

The total number of segments in cyclic loading,

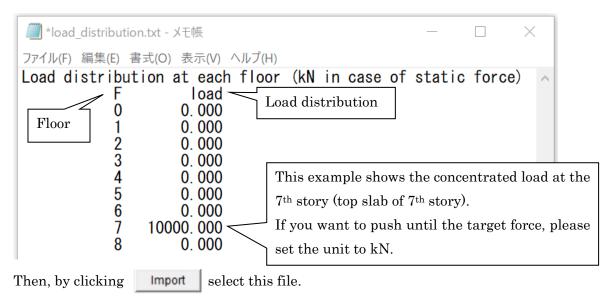
No. of Steps in Segment

Number of calculation steps in each segment for static analysis to increase the accuracy of nonlinear analysis,

- Loading program is defined by the target drift angle, D1, D2 ... D150, at the top of a building in each loading segment. If a negative value is entered, the force is applied in the opposite direction.
- To move to the next drift angle, please click [ADD] button.

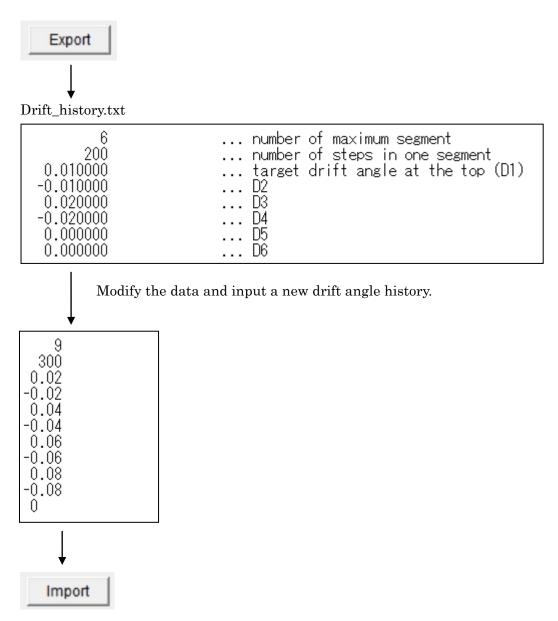

1]	User Defined Input Load Distribution alon	g the Height	Import
2]	Drift Angle History	Export	Import
			ОК

[1] Load Distribution along the Height


In "8.3 Nonlinear static push-over analysis", you can select the load distribution along the height from

1. Ai 2. Triangular 3. Uniform 4. UBC 5. ASCE 6. Mode 7. User defined If you want to use [7. User defined] distribution, please create the load distribution file as follows.

Firstly, in the initial analysis (see 8.1), a file of the horizontal load distribution is automatically created as "load_distribution.txt" in the "input" folder.


Please modify this file and specify the load distribution (ratio) for each story and rename the file.

[2] Drift Angle History

You can export the drift angle history to the text file "Drift_history.txt" by [Export] button. You can import the drift angle history from a text file by [Import] button.

To make the original drift angle history, first, please export an arbitrary history into "Drift_history.txt". Then, please modify this file and input the original drift angle history in the same format.

Import the modified file.

7.3 Condition of dynamic analysis

To change the default condition, please select "Option" in the main menu and select "Analysis" and "Dynamic" from the pull down menu.

🔣 STERA_3D - Stera7F.stera			-	×
File(F) Pattern(P) Member(M) Option(O) View(V) Help(H	H)			
🗋 🖙 🖬 🔯 🜠 Structure				
Member		G 3D		×
Static Analysis >				
Dynamic	<u>^</u>			
Output 6000	6000			
C1 B3 C1 W1 C1	B3 C1			

Option \rightarrow Analysis \rightarrow Dynamic

No. of Subdivision of Time

Separating the original time interval of input earthquake into a smaller time interval will increase accuracy and stability in numerical integration, however, it also increases calculation time.

- The maximum data size input earthquake is 60,000.

- Subdivision of time in output files

No: the time increments of the response output are the same as the time interval of the seismic wave data and are not subdivided.

Yes: the time increments of the response output are also subdivided. If the number of subdivisions is large, the output file size will be large.

- Damping

Three types of damping matrix are available:

[C] = a[K0]: proportional to [K0]

[C] = a[Kp] : proportional to [Kp]

[C] = a[K0]+b[M]: Rayleigh damping

The first mode damping factor, h1, is used for type 1) and 2). The second mode damping factor, h2, is used for type 3).

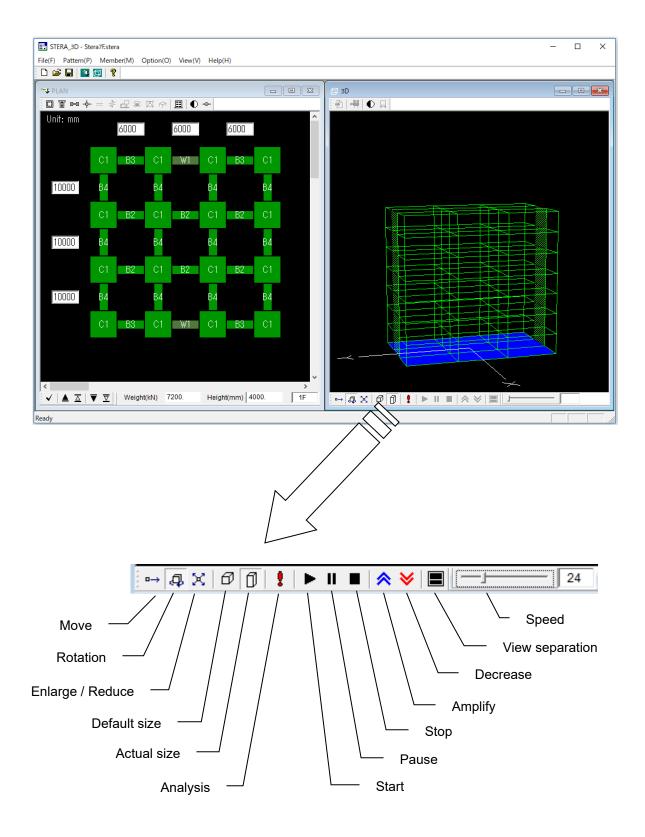
- Numerical Integration Method

You can select the method from the "Average Acceleration Method" and the "Operator Splitting Method".

- Input Motion
- You can select input motion from "Earthquake" ground acceleration, "Vibrator" on a floor and "Wind" pressure.
- Filter to get Ground Displacement

You can set the parameters of Butterworth band-pass filter to get the ground displacement. The default values are:

Low cut filter frequency:	0.1 Hz
---------------------------	--------

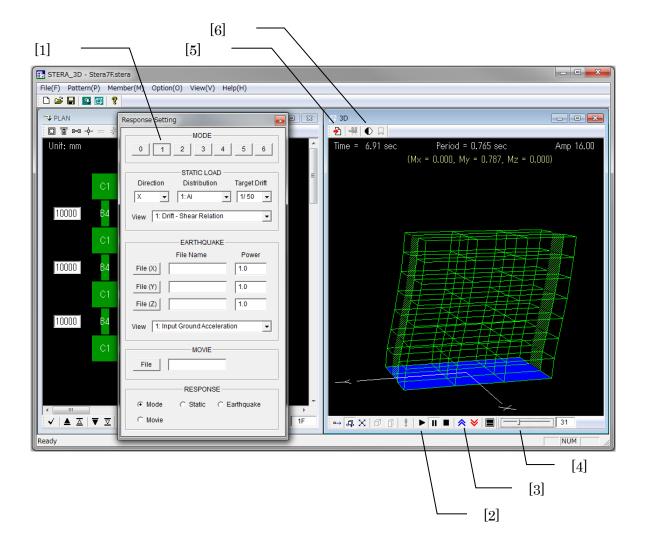

High cut filter frequency:	20 Hz
----------------------------	-------

Order of filtering: 10

Please check "Technical Manual" for the detail.

8 3D View of Building and Response

8.1 3D View of building


- [1] [Default] () set the default size. [Actual] () use the actual size based on input data.
- [2] If the [Analyze] is activated, by clicking the button, you can make an initial analysis for getting natural periods and mode shapes.
 If the analysis is successfully done, the following message will appear on the screen.
 By clicking [OK] button, RESPONSE SETTING DIALOG will also appear.

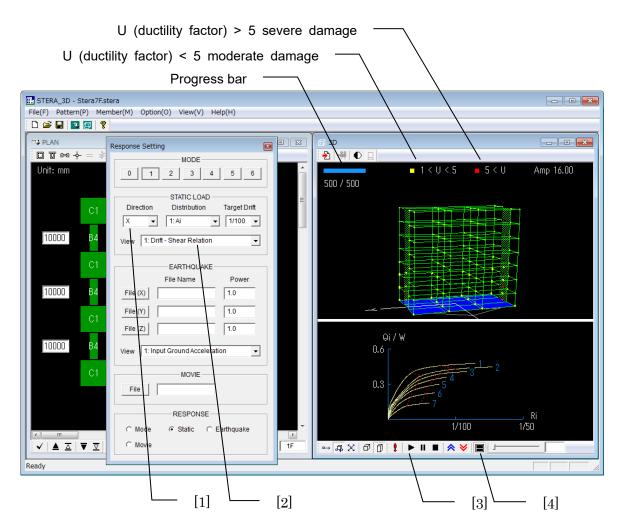
Stera	
Response Setting	
MODE 0 1 2 3 4 5 6 A Modal an STATIC LOAD	nalysis
Direction Distribution Target Drift X 1: Ai 1/50 Push-Over View 1: Drift - Shear Relation Push-Over	r Static er Analysis
	r Earthquake e Analysis
MOVIE) File Play move	vie
RESPONSE • Mode • Static • Earthquake • Movie • Movie • Change • Change	analysis

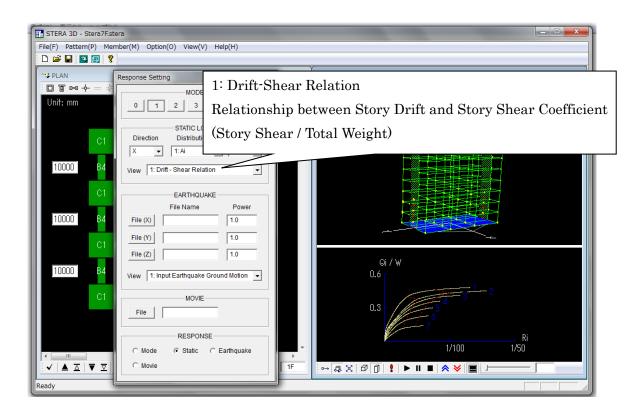
8.2 Modal analysis

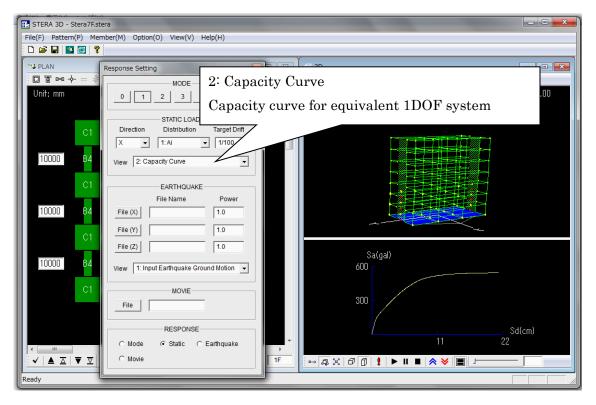
- [1] On the RESPONSE SETTING DIALOG, please click the MODE number from [0] to [6] to see the view of mode shape and the value of natural period (Period) and effective modal mass ratio (Mx, My, Mz).
- [2] On the 3D VIEW, (**b**) starts the vibration of each mode, (**b**) stops the vibration and (^{III}) pauses the vibration.

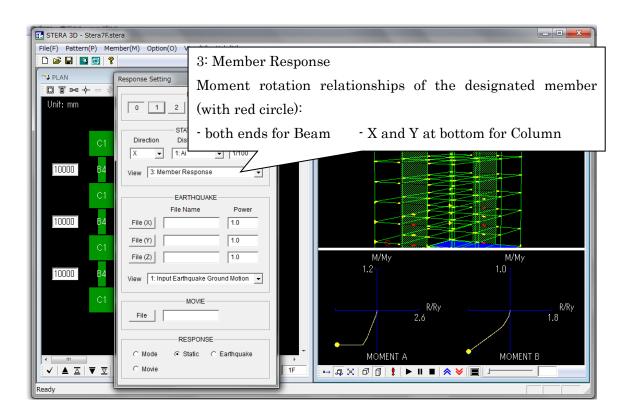
- [3] (\land) amplifies the response.) reduces the response.
- 33 [4] Slider changes the speed of vibration.
- [5] () will save the results into text files.
- (changes the color of the view to be black and white. [6]

8.3 Nonlinear static push-over analysis


[1] Please set loading conditions for the STATIC LOAD:


-	
"Direction":	please select loading direction from the menu.
	1. X 2. –X (opposite to X) 3. Y 4Y (opposite to Y)
"Distribution":	please select a loading distribution along the height of the
	building. The load is applied at the center of gravity in each floor.
	1. Ai 2. Triangular 3. Uniform 4. UBC 5. ASCE
	6. Mode 7. User defined
"Target Drift":	please set the target drift ratio which is defined by the ratio
	between the top displacement and the height of the building.
	"Cyclic" is the cyclic loading and "Force" is the target force
	as described in 7.2.
	1. 1/50 2. 1/100 3. 1/200 4. Cyclic 5. Force


[2] Please select the response for the lower view window.


[3] On the 3D VIEW, () starts, () pauses and () stops the response.

[4] () will change the view from 2-screens to 1-screen and vice versa.

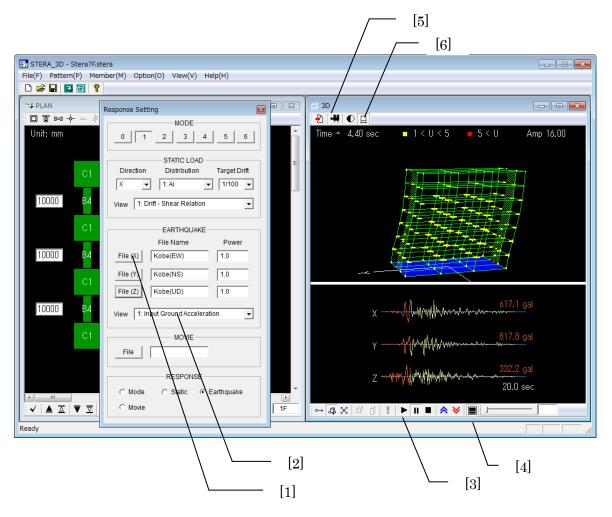
8.4 Nonlinear earthquake response analysis

(in case "Earthquake" is selected in the Option menu of dynamic analysis)

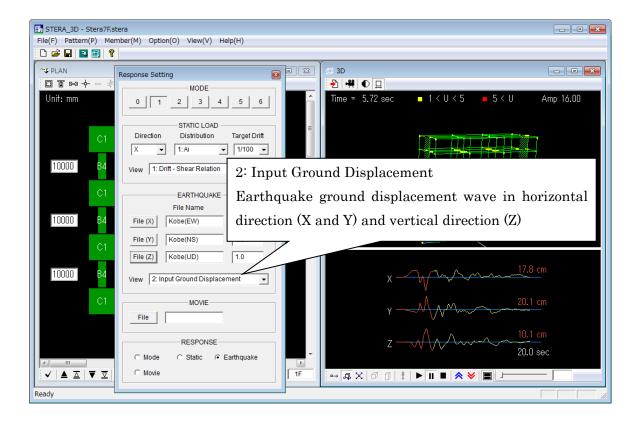
[1] On the RESPONSE SETTING DIALOG, please set earthquake data:

"File(X)":	Please select earthquake input file for X-direction.
"File(Y)":	Please select earthquake input file for Y-direction.
"File(Z)":	Please select earthquake input file for Z-direction (up-down).
"Power":	Set the value to amplify the original earthquake
The format of th	e input file is described in Section 9.1.

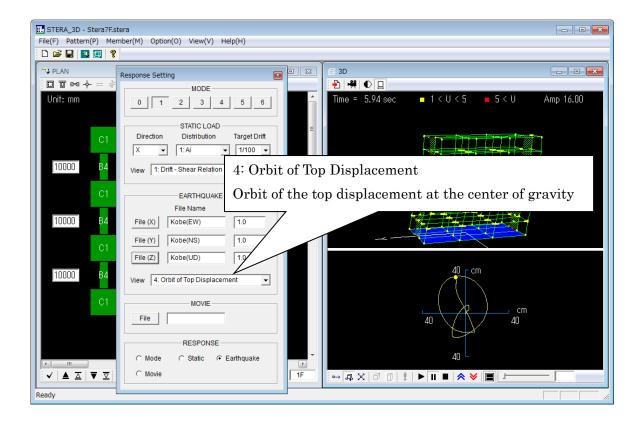
[2] Please select the response for the lower view window.

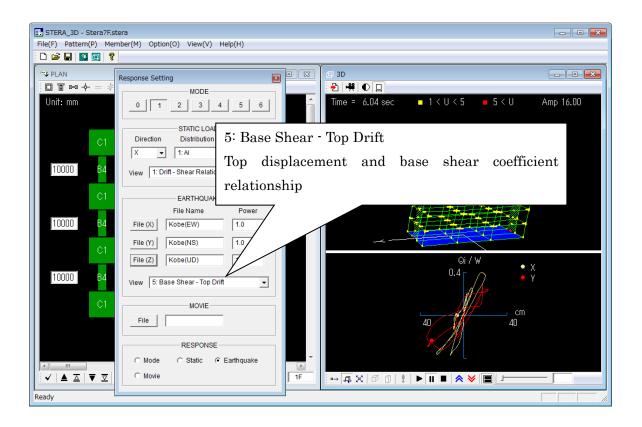

[3] On the 3D VIEW, () starts, () pauses and () stops the response.

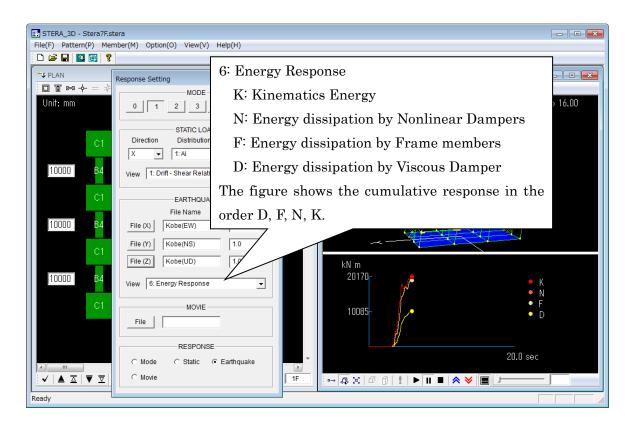
In the lower view, you can see the input earthquake wave and present status.

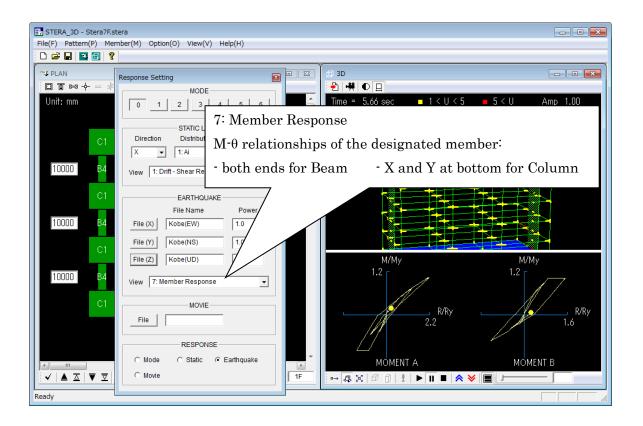

[4] () will change the view from 2-screen to 1-screen and vise versa.

[5] (H) will save the response animation as a movie file (see 5-5).


[6] (\Box) will switch on and off to include ground movement.




File(F) Pattern(P) Member(M) Option(O) View(V) Help(H)	
Image: Contract of the second sectors Image: Contract of the second second sectors Image: Contract of the second se	
C1 Direction Distribution Target Drift X I 1:Ai	
1: Input Earthquake Ground Motion	
Earthquake ground acceleration wave in horizontal	
File Name File (X) Kobe(EW) direction (X and Y) and vertical direction (Z)	
C1 File (Y) Kobe(NS) 1.0	
10000 B4 View 1: Input Ground Acceleration X 617.1 gal	
RESPONSE C Mode C Static C Earthquake	
Image: A triangle of the second s	



File(F) Pattern(P) Member(M) Option(O) View(V) Help(H)	
Image: Constraint of the second s	
	o 16.00
STATIC LOAD	
C1 Direction Distribution Target Drift X T 1:Ai T 1/100 T	
10000 B4 View 1: Drift - Shea 3: Top Displacement Response	
C1EAR Top displacement at the center of gravity	
C1 File (Y) Kobe(NS)	
File (Z) Kobe(UD) 1.0 40 cm 20.0 s	sec
10000 B4 View 3: Top Building Displacement	
C1 MOVIE	
C Mode C Static C Earthquake ✓ ▲ △ ▼ □ ✓ ▲ ✓ ● ④ ✓ ● <	
Ready	

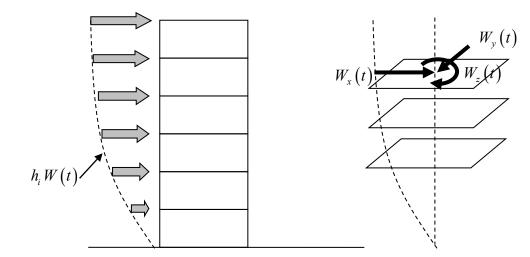
8.5 Nonlinear vibrator response analysis

(in case "Vibrator on the Floor" is selected in the Option menu of dynamic analysis)

Response Setting ×
MODE
0 1 2 3 4 5 6
STATIC LOAD
Direction Distribution Target Drift
X 🔹 1:Ai 🔹 1/50 💌
View 1: Drift - Shear Relation
VIBRATOR Floor No. 1F VIBRATOR
Amp (kN) T(sec)
C Sine 10.00 1.000
C Random File
View 1: Input Vibrator Force
MOVIE
File

Floor	VIBRATOR No. 1F VIBRATOR
C Sin C Rar	
View	1: Input Vibrator Force
File	2: Top Building Acceleration 3: Top Building Displacement 4: Orbit of Top Displacement 5: Base Shear - Top Drift 6: Energy Response 7: Member Response

- Floor number and the direction of movement (X or Y) to set the vibrator.
- Loading force (kN) can be selected from "Sine" wave and "Random" wave.
- In case of "Sine" wave, you input amplitude and natural period.
- In case of "Random" wave. You select an input file from the dialog window.

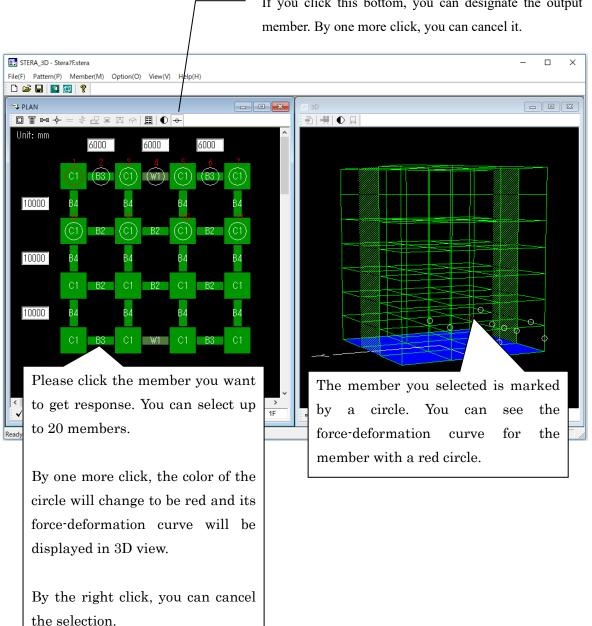

- 1. Input Vibrator Force
- Top Building Acceleration Top acceleration at the center of gravity
- Top Building Acceleration
 Top displacement at the center of gravity

The following menu is the same as Earthquake analysis.

8.6 Wind response analysis

(in case "Wind" is selected in the Option menu of dynamic analysis)

The dynamic wind force is assumed to be applied at the center of gravity at each floor with the constant distribution along the height of the building.


Response Setting	×
MODE	4 5 6
Direction Distribution	
X • 1:Ai	▼ 1/50 ▼
View 1: Drift - Shear Relati	ion 🖵
WIND	
Wind force D	istribution Power
Wx (kN)	Dist x 1.0
Wy (kN)	Dist y 1.0
Wz (kNm)	Distz 1.0

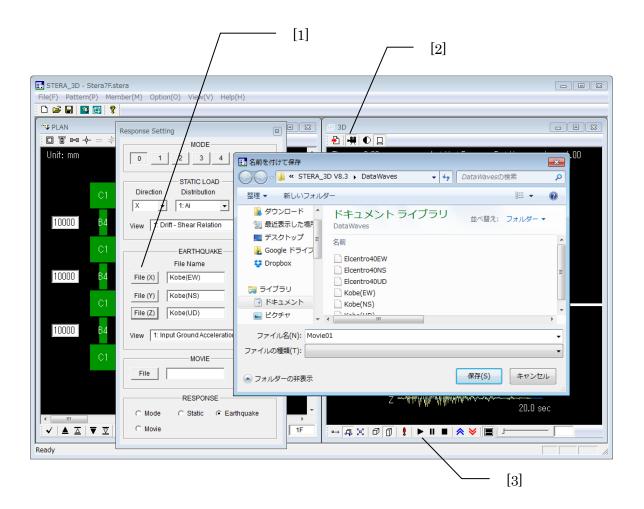
- Wx (kN): Please select an input file for wind lateral force in x-direction.
- Wy (kN): Please select an input file for wind lateral force in y-direction.
- Wz(kNm): Please select an input file for wind torque force in z-direction.
- The format of the input files of wind forces Wx, Wy and Wz are the same as the input earthquake acceleration data as described in Section 9.1
- Dist x, Dist y and Dist z: Please select input files for lateral distribution of the wind loads along the height.
- The format of the lateral distribution of the wind loads Dist x, Dist y and Dist z are the same as the user defined horizontal loads in static analysis as described in Section 7.2.
- Power: Set the value to amplify the original wind loads.

8.7 Response output member

You can obtain the response time history of the designated member.

If you click this bottom, you can designate the output

8.8 Save Nonlinear Earthquake Response as a Movie File

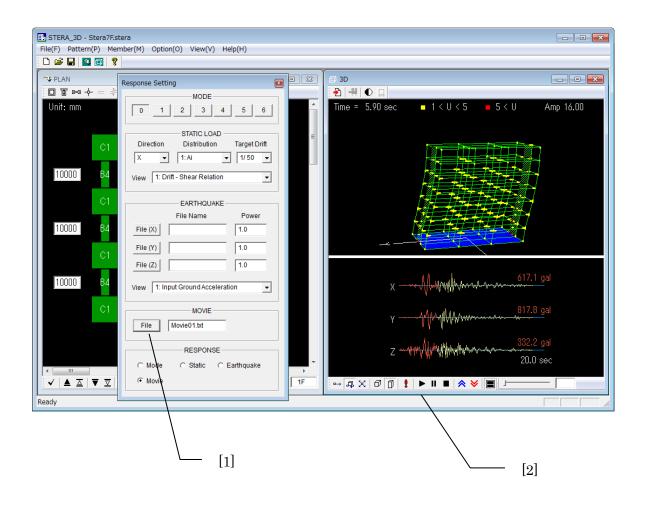

Generally, it takes long time to calculate earthquake response of a building. In this case, you can save the response of the building in a movie file and later you can play the movie to see the response quickly.

1) Record movie

[1] On the RESPONSE SETTING DIALOG, please select earthquake input files in the menu "EARTHQUAKE".

[2] Please push the movie button () and write the file name such as "Movie.txt".

[3] Automatically the recording will start.



2) Play movie

[1] On the RESPONSE SETTING DIALOG, please push **File** in the "MOVIE" menu to

select a movie file.

[2] () starts, () pauses and () stops the response.

8.9 Change Analysis

[1] On the RESPONSE SETTING DIALOG, you can change the analysis:

Mode:	Modal Analysis
Static:	Nonlinear Static Push-Over Analysis
Dynamic:	Earthquake / Vibrator / Wind Response Analysis
Movie:	Movie for Nonlinear Earthquake Response Analysis

lesponse Setting	×	
MODE		
0 1 2 3 4	5 6	
STATIC LOAD Direction Distribution	Target Drift	
X 🔻 1:Ai 💌	1/50 👻	
View 1: Drift - Shear Relation	•	
EARTHQUAKE		
File Name	Power	
File (X)	1.0	
File (Y)	1.0	
File (Z)	1.0	
View 1: Input Ground Acceleratio	n •	
MOVIE		
File		
RESPONSE		
	namic	
C Movie		

9 Input Earthquake Ground Motion

9.1 Format of input earthquake data file

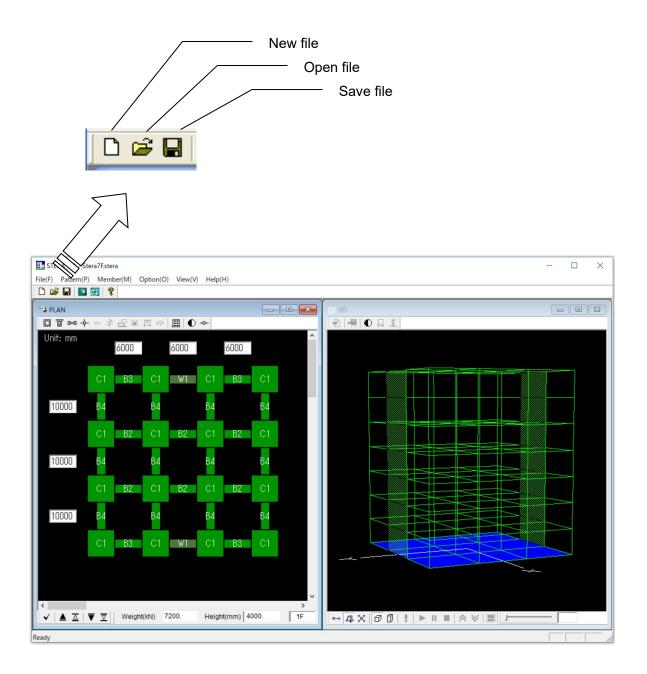
When you prepare an input earthquake file by yourself, please arrange the data format as follows:

Order	Туре	Information	Comments
1 st data	INT	Number of data	The number of data for acceleration
(NDATA)			
2 nd data	REAL	Time interval	(sec)
(DT)			
3 rd data	REAL	Acceleration	Please arrange NDATA data separated by
and later		(cm/sec^2)	commas or spaces.

The maximum data size of input earthquake (NDATA) is 60,000. (NDATA < 60,000)

The ground moves according to the ground displacement are automatically calculated from acceleration data.

Example)

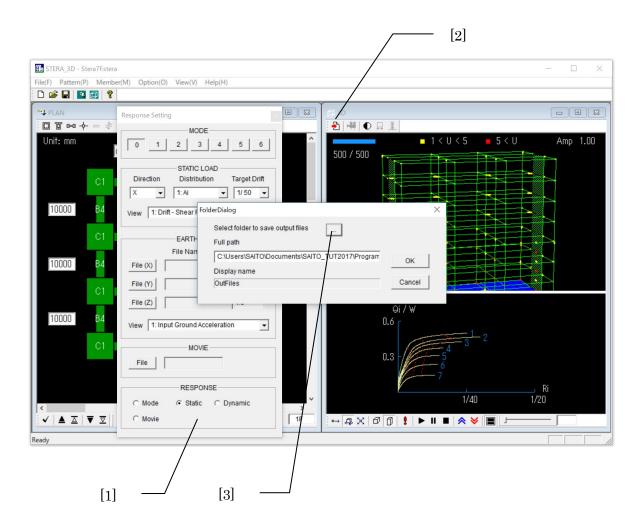

This is the earthquake data "Kobe 1995_NS.txt" in the "./sample/wave/" folder.

1000	NDA	TA							
0.020	nDT (1	time interv	al, sec)						
0.70	0.70	-0.30	-2.00	-2.90	-1.70	-0.30	-0.90	-0.40	3.30
3.50	-2.00	-6.30	-5.70	-3.60	-4.10	-2.50	0.20	-0.50	-4.50
-9.30	-5.70	2.50	4.70	4.50	9.20	13.70	8.20	6.60	4.00
-6.50	-11.00	0.40	14.90	2.20	-8.00	4.40	15.90	24.40	36.60
38.30	20.10	3.60	-1.80	0.00	14.80	3.40	-40.00	-49.60	-36.00
-21.90	-9.60	-0.90	0.40	-20.60	-31.30	-24.80	-14.00	3.70	11.00
-2.10	-16.70	-16.30	-12, Ac	celeration	data (cm/se	ec²) ()	-5.80	-13.50	-26.60
-20.60	24.10	65.30	44.70	0.90	-14.80	7.30	30.40	13.40	-12.00
-24.00	-28.40	-14.00	-10.60	-5.40	13.50	18.30	27.90	33.00	31.50
40.00	8.60	-23.40	-38.80	-26.10	26.90	21.00	9.30	15.40	13.70
25.30	7.30	-17.30	-23.60	-20.80	-12.60	-28.50	-28.50	-15.60	-15.00

10 Save and Open Files

10.1 Save building data

You can save the building data in a file and open it later. The file has an extension ".stera".



10.2 Save results of analysis in text files

You can save the results of modal analysis, nonlinear push-over analysis and nonlinear earthquake response analysis in the text files..

[1] On the RESPONSE SETTING DIALOG, please set the condition of analysis.

- [2] Please push the "Save Data" button (
- [3] Please select folder to save output text files.

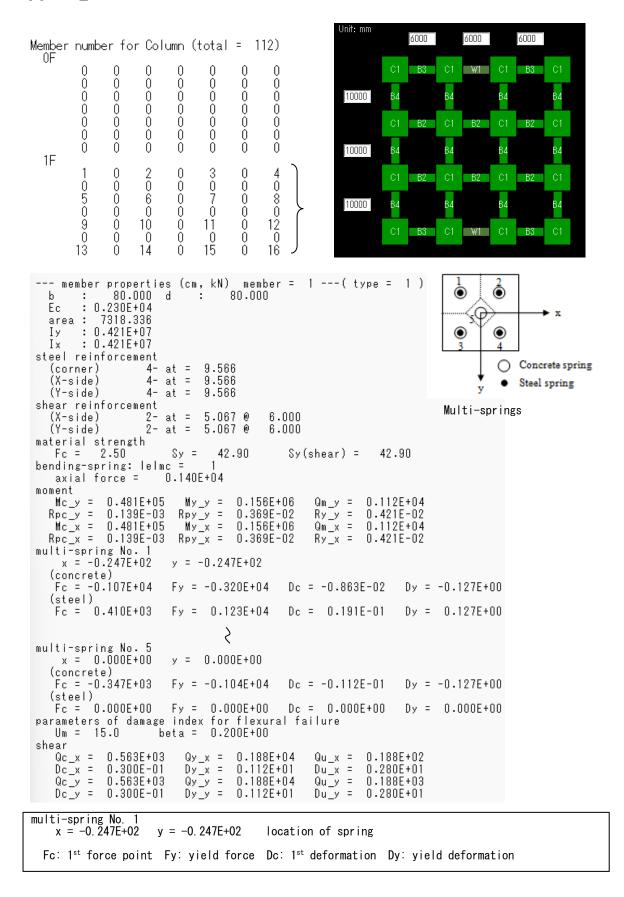
[4] When you push "OK", a message window appears to start calculation and save output data to the designated folder.

Stera		×
0	Are you ready to analyze	17
	はい(Y) いいえ(M	1)

If you select "Yes", the analysis starts automatically.

>>>> Start initial analysis
>>>> Start elastic modal analysis
<pre>>>>> Start nonlinear dynamic analysis 1 % finished 2 % finished 3 % finished 4 % finished 5 % finished 6 % finished 7 % finished 8 % finished</pre>
90 % finished 91 % finished 92 % finished 93 % finished 94 % finished 95 % finished 96 % finished 97 % finished 98 % finished 100 % finished

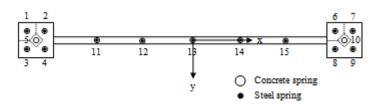
10.3 Output text files


In the designated folder, the following files are automatically created:

 data_beam.txt data_bi.txt data_column.txt data_damper.txt data_floor.txt data_ground.txt data_panel.txt data_pulley.txt data_spring.txt data_structure.txt data_wall.txt 	data_*** Input data of members and building beam : Beam bi : Base Isolator column : Column damper : Damper and Nonstructural wall floor : Floor slab ground : Ground spring node : node panel : connection panel spring : External spring structure : Building wall : Wall
 max_beam.csv max_bi.csv max_column.csv max_column.csv max_damper.csv max_floor.csv max_floor.csv max_ground.csv max_member01.csv max_member02.csv max_member03.csv max_member03.csv max_node.csv max_node.csv max_panel.csv max_pulley.csv 	max_*** Maximum response of members and building
 max_spring.csv max_structure.csv max_wall.csv mode_node.csv 	mode_node Mode participation vector of each node
 response_eigen.csv response_energy.csv response_member01.csv response_member02.csv response_member03.csv response_structure.csv 	response_eigen Natural period and mode response_energy Energy response response_floor01, 02, Response of 3D rigid floor (6 components) response_member01, 02, Response of designated members response_structure Response of floors (horizontal components)

[1] "data beam.txt" Unit: mm 6000 6000 6000 B1 B1 B1 Member number for Beam (total = 178) 10000 ÛF Β1 3 0 Û 2 0 Û 0 7 Û Û 5 6 4 B1 B1 B1 10 0 17 Ó 8 Ô ĝ Ô 0 Ŏ 1Ž ŏ 13 11 14 10000 B1 15 Ó 0 16 Ó 0 0 23 Ō 2Õ 19 0 21 18 B1 B1 B1 22 24 0 0 0 0 1F 10000 B1 B1 0 25 26 0 0 Û 0 27 Ō 28 29 30 0 0 0 92 B1 - B1 20 25 3Ž B1 0 27 0 33 31 зĂ <u>∩</u> Ω --- member properties (cm, kN) member = 1 ---(type = 1) b : 60.000 d : 150.000 slab : 15.000 b : : 0.230E+04 Ec area : 11360.820 Iy : 0.284E+08 steel reinforcement 10- at = 11.400 10- at = 11.400 (up) (down) slab reinforcement 1- at = 0.713 @ 20.000 shear reinforcement 2- at = 5.067 @ 6.000 material strength Sy = Fc = 2.50 42.90 Sy(shear) = 42.90 moment from bottom rebars Mc = 0.102E+06 Rc = 0.135E-03 Mu = 0.838E+060.643E+06 My = Qm = 0.322E+04 Ry2 = 0.200E-01Ry = 0.495E-02moment from top rebars Mc = 0.111E+06My = 0.661E+06Mu = 0.855E+06 Qm = 0.329E+04 Ry = 0.509E - 02Ry2 = 0.200E-01Rc = 0.147E-03parameters of damage index for flexural failure Um = 15.0beta = 0.200E+00 shear $Q_{c} = 0.112E+04$ Qy = 0.335E+04 Qu = 0.867E+04 Dc = 0.656E-01 Dy = 0.208E+01Du = 0.520E+01

b: width d: height slab: thickness
Ec: Young's Modulus
area: Area
Iy: Moment of inertia
Fc: concrete strength Sy: steel strength Sy(shear) : steel strength of hoop
Mc: crack moment My: yield moment Mu: ultimate moment Qm: shear force from My
Rc: crack rotation Ry: yield rotation of nonlinear spring Ry2: yield rotation
Qc: crack shear force Qy: yield shear force Qu: ultimate shear force


[2] "data_column.txt"

[3] "data_wall.txt"

[J] ua	ila_wai	1.171							Unit: mm		1/000		1000		1000	
	number	r for	Wall	(total	=	14)				6000		6000		6000	
0F 1F	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		10000	C1 B4 C1 B4	B3 B2	C1 B4 C1 B4	W1	C1 B4 C1 B4	B3 B2	C1 B4 C1 B4
	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 2	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	<pre>}</pre>	10000	В4 С1 В4 С1	B2 B3	В4 С1 В4 С1	B2 W1	В4 С1 В4 С1	B2 B3	Б4 С1 В4 С1
Ec : ac1 : ic1 : bending- axial moment Mc_y Rpc_y multi-sp x = (concr Fc = (steel	0.3001 0.2301 0.7321 spring force = 0.2 = 0.1! ring No -0.3261 ete) -0.1071	+02 +04 +07 = 17E+0 58E-0 5.1 = +03 E+04	ac2 ic2 mw = 0.58 7 M 4 Rr y = Fy	: (: ()0E+()0E+()y_y : -0. : -0.).732E).421E)4)4	+04 +07 652E 102E 02 +04	aw iw +07 -02 Dc	: 0.3 : 0.1 Ry_y = -0.8	(type 314E+05 168E+10 = 0.118 363E-02 191E-01	ash 3E-O2 Dy	: 0 2 = -0	.139	7E+05 3E+00 3E+00			
(concr	0.173 ete) -0.221) 0.419 rs of (15.0 ring 0.186 0.224	E+03 E+04 Hamag Hamag E+04 E-01 Hamag	Fy e inc beta Qy Dy	= -(= (= (= (= (lex f).500E).558E).112E	+04 exur -01 +04 +01 ear	Dc ral fa Qu Du	= 0.1 ilure = 0.5 = 0.2	363E-02 191E-01 572E+04 280E+01				∂E+00 ∂E+00			

ac1: area of column 1 ac2: area of column 2 aw: area of wall ash: area for shear ic1: I(moment of inertia) of column 1 ic1: I of column 2 iw: I of wall

軸ばね(multi-spring)

[4] "data_ground.txt"

**** GROUND SPRING ****

<Pile> <Foundation> Sway F RKhx F_IKhx F_RKhy F_IKhy P_RKhx P_IKhx P_RKhy P_IKhy $(k\overline{N}/cm)$ $(k\overline{N}/cm)$ $(k\overline{N}/cm)$ $(k\overline{N}/cm)$ $(k\overline{N}/cm)$ $(k\overline{N}/cm)$ $(k\overline{N}/cm)$ $(k\overline{N}/cm)$ 0. 2551E+04 0.1439E+05 0. 2735E+04 0.3916E+05 0.7438E+04 0.1343E+05 0. 1343E+05 0. 2551E+04 Rocking F_RKry F_IKry (kNcm/rad) F_RKrx (kNcm/rad) F_IKrx (kNcm/rad) P_IKry (kNcm/rad) P_RKrx (kNcm/rad) P_IKrx (kNcm/rad) P_RKry (kNcm/rad) (kNcm/rad) 0.4514E+11 0.8577E+10 0.4514E+11 0. 5902E+11 0.8577E+10 0. 1121E+11 0. 1377E+12 0. 2616E+11 Radiation F_Chx (kNs/cm) P_Chy (kNs/cm) F_Chy (kNs/cm) F_Cry (kNs/cm) F_Crx (kNs/cm) P_Chx (kNs/cm) P_Cry (kNs/cm) P_Crx (kNs/cm) 0.1512E+04 0.1512E+04 0.2153E+10 0. 2153E+10 0.1586E+04 0.1134E+04 0.0000E+00 0.0000E+00 Ix (kNcms2) Iy (kNcms2) mass (kNs2/cm) 0.0000E+00 0.0000E+00 0.0000E+00 Trkx Tswy 0.196 Ty 0. 838 Тх Tswx Trky 0.270 1 0.575 0.197 0.261 h 0.030 hx (2) 0. 202 hrky 0. 095 r_hswx 0, 609 r_hrky hx (3) hswx 0. 113 0.095 0.109 hy (2) hy (3) hswy hrkx r_hswy r_hrkx 0.066 0.040 0.095 0.095 0.189 0.044

F(foundation), P(plle), R(real), I(imaginary), K(stiffness), C(damping), h(sway), r(rocking),

x(X-axis), y(Y-axis)

For example

hswx:

F_RKhx: Foundation Sway Stiffness Spring, Real part, in X-axis

P_IKry: Pile Rocking Stiffness Spring, Imaginary part, around Y-axis

F_Chx: Foundation Sway Damping coefficient, in X-direction

Tx : Building Period in X-axis, Tswx : Sway Period in X-axis, Trky : Rocking Period around Y-axis

Ty : Building Period in Y-axis, Tswy : Sway Period in Y-axis, Trkx : Rocking Period around X-axis

h : Building Damping factor

 $hx(2) = h + (Tswx/Tx)^2 (hswx + r_hswx) + (Trky/Tx)^2 (hrky + r_hrky)$

 $hx(3) = h + (Tswx/Tx)^{3} (hswx + r_hswx) + (Trky/Tx)^{3} (hrky + r_hrky)$

Sway Damping factor in X-axis, hswy : Sway Damping factor in Y-axis

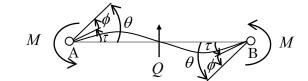
hrky : Rocking Damping factor around Y-axis, hrkx : Rocking Damping factor around X-axis

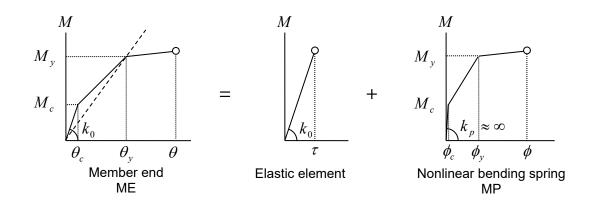
r_hswx : Radiation Sway Damping factor in X-axis,

r_hswy: Radiation Sway Damping factor in Y-axis

r_hrky : Radiation Rocking Damping factor around Y-axis,

r_hrkx : Radiation Rocking Damping factor around X-axis,


[5] "max_beam.csv"


Unit (kN,cm)

EL.NO.=	33	disp	force	Um	Uh	D.I
ME	1	-0.2621E-02	-0.1034E+06	-0.62	0.093	0.043
MP	1	0.2403E-02	-0.1034E+06	0.76	0.000	
ME	2	-0.3307E-02	0.1065E+06	-0.79	0.089	0.054
MP	2	-0.3050E-02	0.1065E+06	-0.96	0.000	
Q	1	-0.5575E-01	-0.3563E+03	-0.03		

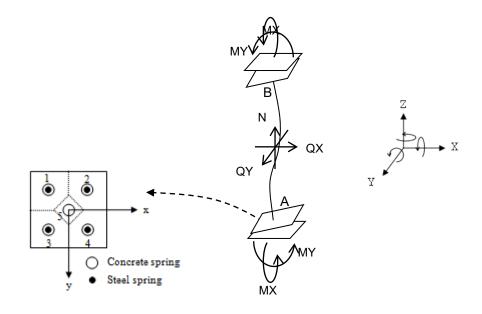
- ME: Member end A
- Nonlinear bending spring at end A MP:
- Member end B ME:
- Nonlinear bending spring at end B Nonlinear shear spring MP:
- Q:

- Um: Ductility factor (= Dm / Dy) (Dm: max disp., Dy: yield disp.) Cumulative ductility factor (=Eh / QyDy) Uh: (Eh: hysteresis energy, Qy: yield force) D.I.: Damage Index
 - (RC: Park and Ang, S: Fatigue)

Ductility factor is the ratio of the maximum deformation divided by the yield deformation as,

$$\mu = \frac{\theta_{\text{max}}}{\theta_y} \text{ for member end}$$
$$\mu = \frac{\phi_{\text{max}}}{\phi_y} \text{ for nonlinear bending spring}$$

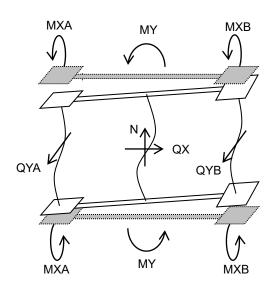
[6] "max_column.csv"

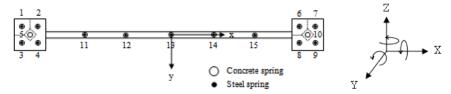

Unit (kN,cm)

EL. NO. =	1	disp force	Umy			disp force	Umx	Uh	D. I
MY	1	0. 2585E-02 -0. 1348E+06	0.00	MX	1	0. 2098E-05 -0. 2680E+04	0.00	0. 040	0.001
CO	1	0.9620E-01 -0.1766E+04	-0.76 /	ST	1	0.9620E-01 0.9981E+03	0.76		
CO	2	0. 2662E-01 -0. 6613E+03	-0.21 /	ST	2	0. 2662E-01 0. 4679E+03	0.21		
CO	3	0.9647E-01 -0.1763E+04	-0.76 /	ST	3	0.9647E-01 0.1000E+04	0.76		
CO	4	0. 2683E-01 -0. 6391E+03	-0.21 /	ST	4	0. 2683E-01 0. 4695E+03	0.21		
CO	5	0. 4591E-01 -0. 3200E+03	-0.36 /	ST	5	0.0000E+00 0.0000E+00	0.00		
MY	2	0. 5071E-03 0. 2786E+05	0.00	MX	2	0. 1515E-04 0. 1793E+04	0.00	0.062	0.001
CO	1	-0. 6212E-02 -0. 7677E+03	0.05 /	ST	1	-0. 6212E-02 -0. 1337E+03	-0.05		
CO	2	0. 1827E-01 -0. 9443E+03	-0.14 /	ST	2	0. 1827E-01 0. 3933E+03	0.14		
CO	3	-0. 6243E-02 -0. 7715E+03	0.05 /	ST	3	-0. 6243E-02 -0. 1344E+03	-0.05		
CO	4	0. 1808E-01 -0. 9475E+03	-0.14 /	ST	4	0. 1808E-01 0. 3892E+03	0.14		
CO	5	0.8815E-02 -0.2104E+03	-0.07 /	ST	5	0.0000E+00 0.0000E+00	0.00		
QX		-0. 2722E-01 -0. 5106E+03	-0. 02	QY		-0. 4822E-03 -0. 9044E+01	-0.00		
Ň		-0. 7363E-01 -0. 4163E+04							

MY: moment around Y axis, end A MX: moment around X axis, end A CO : concrete spring ST: steel spring MY: moment around Y axis, end B MX: moment around X axis, end B CO : concrete spring ST: steel spring QX : shear force in X axis QY: shear force in Y axis N: axial force

Umx,	Umy:	Ductility factor (= Dm / Dy)
	(Dm: n	nax disp., Dy: yield disp.)
Uh:	Cumu	ative ductility factor (=Eh / QyDy)
	(Fh: h)	steresis energy, Qv: vield force)


D.I.: Damage Index (RC: Park and Ang)



[7] "max_wall.csv"

Unit (kN,cm)

EL.NO.= 1 disp force	Um		disp	force	Um	Uh 6 577	D.I
MY 1 0.2818E-02 -0.6502E+07 MXA 1 0.4383E-04 -0.9028E+04 CO 1 0.1792E+00 -0.2706E+04 CO 2 0.1595E+00 -0.2202E+04 CO 3 0.1860E+00 -0.2202E+04 CO 4 0.1663E+00 -0.2130E+04 CO 5 0.1728E+00 -0.7880E+03 CO 6 0.2655E+00 -0.1733E+04 CO 7 0.2973E+00 -0.2031E+04 CO 9 0.3004E+00 -0.2031E+04 CO 9 0.3004E+00 -0.2031E+04 CO 10 0.2829E+00 -0.6032E+03 CO 10 0.2829E+01 -0.8239E+03 CO 10 0.1241E+00 -0.2784E+04 CO 12 0.9080E-01 -0.1037E+04 CO 12 0.9080E-01 -0.1037E+04 CO 12 0.1902E+00 -0.2528E+03 CO 14 0.1502E+00	$\begin{array}{c} 2.38\\ 0.01\\ -1.29\\ -1.34\\ -1.34\\ -1.20\\ -1.34\\ -1.91\\ -2.143\\ -2.143\\ -2.04\\ -0.65\\ -1.08\\ -0.76\\ -1.08\\ -0.76\\ -0.76\\ -0.76\\ -0.91\\ -0.37\\ -0.37\\ -0.37\\ -0.37\\ -0.50\\ -0$	MXB 1 2.33 4.5 6.7 8.9 10.1 1.2 3.4 5.6 7.8 9.10 1.1 1.2 3.4 5.6 7.8 9.10 1.1 1.2 3.4 5.6 7.8 9.10 1.1 <t< td=""><td>0.4901E-04 0.1792E+00 0.1595E+00 0.1663E+00 0.2655E+00 0.2655E+00 0.2655E+00 0.2658E+00 0.2000E+00 0.2000E+00 0.9080E-01 0.9653E-01 0.1502E+00 0.2041E+00 0.1042E+00 0.1042E+00 0.1042E+00 0.1045E+00 0.1056E+00 0.1272</td><td>-0.2265E+05 0.1241E+04 0.1242E+04 0.1245E+04 0.1245E+04 0.1276E+04 0.1276E+04 0.1278E+04 0.1278E+04 0.1278E+04 0.1284E+04 0.1265E+04 0.3802E+03 0.1260E+04 0.1082E+04 0.3938E+03 0.1003E+04 0.1032E+04 0.3938E+03 0.1003E+04 0.1143E+04 0.1232E+04 0.1252E+04 0.1252E+04 0.1252E+04 0.1252E+04 0.1252E+04 0.1252E+04</td><td>0.01 1.29 1.34 1.20 0.00 1.91 2.16 0.009 0.670 1.08 0.75 0.670 0.767 0.001 0.802 0.001 0.802 0.001 0.802 0.00377 0.254 0.63 0.254 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.000 0.63 0.63 0.63 0.63 0.000 0.63 0.63 0.0000 0.0000 0.0000 0.0000 0.0000000 0.00000000000000000000000000000000000</td><td>6.577 5.934 0.090</td><td>0.181</td></t<>	0.4901E-04 0.1792E+00 0.1595E+00 0.1663E+00 0.2655E+00 0.2655E+00 0.2655E+00 0.2658E+00 0.2000E+00 0.2000E+00 0.9080E-01 0.9653E-01 0.1502E+00 0.2041E+00 0.1042E+00 0.1042E+00 0.1042E+00 0.1045E+00 0.1056E+00 0.1272	-0.2265E+05 0.1241E+04 0.1242E+04 0.1245E+04 0.1245E+04 0.1276E+04 0.1276E+04 0.1278E+04 0.1278E+04 0.1278E+04 0.1284E+04 0.1265E+04 0.3802E+03 0.1260E+04 0.1082E+04 0.3938E+03 0.1003E+04 0.1032E+04 0.3938E+03 0.1003E+04 0.1143E+04 0.1232E+04 0.1252E+04 0.1252E+04 0.1252E+04 0.1252E+04 0.1252E+04 0.1252E+04	0.01 1.29 1.34 1.20 0.00 1.91 2.16 0.009 0.670 1.08 0.75 0.670 0.767 0.001 0.802 0.001 0.802 0.001 0.802 0.00377 0.254 0.63 0.254 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.255 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.000 0.63 0.63 0.63 0.63 0.000 0.63 0.63 0.0000 0.0000 0.0000 0.0000 0.0000000 0.00000000000000000000000000000000000	6.577 5.934 0.090	0.181
N 0.1084E+00 -0.8350E+04							

[8] "max_node.csv"

Unit (kN,cm)

Maximum Nodal Response 0F 2 6 10 14 4 12 16 17 3 7 5 9 13 11 15 Center of gravi ty: 1F 18 22 26 19 23 27 31 21 25 29 33 34 20 24 28 32 <u>30</u> Center of gravi ty: 2F 38 42 46 50 35 39 36 37 40 44 48 41 45 49 43 47 Center of gravity ŠŤ node 1 X 0.00 600.00 1200.00 1800.00 600.00 1200.00 1200.00 1800.00 dy 0.0000E+00 dz 0.0000E+00 Y ry 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Y 0.00 0.00 0.00 1000.00 1000.00 1000.00 1000.00
 FX

 0.0000E+00

 0.3035E-03

 0.9053E-04
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2 3 4 5 6 7 8 9 10 11 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2000.00 2000.00 2000.00 2000.00 3000.00 3000.00 3000.00 3000.00 0.00 600.00 1200.00 1800.00 0.0000E+00 0.9873E-13 0.1921E-13 0.1398E-12 0.9873E-13 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.1164E+01 0.6651E+01 0.6651E+01 0.4719E+00 0.8802E+00 0.0000E+00 0.0000E+00 12 13 14 15 16 17 18 19 0.0000E+00 0.00 600.00 1200.00 1800.00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.2045E-01 0.1212E-01 0.1212E-01 0.3001E-01 0.2882E-01 0.0000E+00 1500.00 1500.00 0.00 0.00 0.0000E+00 0.1325E-15 0.1325E-15 0.1325E-15 0.1325E-15 0.1325E-15 900.00 0.00 600.00 400.00 400.00 400.00 20 21 22 1200.00 0.00 400.00 1000.00 0.1021E+02 0.8802E+00 0.4683E-04 0.2883E-01 0.1325E-15 0.00 400.00

node	node number
<coordinate></coordinate>	
Х	X coordinate (cm)
Y	Y coordinate (cm)
Z	Z coordinate (cm)
<maximum d<="" nodal="" td=""><td>lisplacement></td></maximum>	lisplacement>
dx	displacement in X-direction (cm)
dy	displacement in Y-direction (cm)
dz	displacement in Z-direction (cm)
rx	rotational angle around X-direction
ry	rotational angle around Y-direction
rz	rotational angle around Z-direction

[9] "max_structure.csv"

Unit (kN,cm)

F76543210	h (cm) 0. 4000E+03 0. 4000E+03 0. 4000E+03 0. 4000E+03 0. 4000E+03 0. 4000E+03 0. 4000E+03 0. 0000E+00	sdx (cm) 0. 1135E+01 0. 1227E+01 0. 1339E+01 0. 1481E+01 0. 1502E+01 0. 1400E+01 0. 8303E+00 0. 0000E+00	sdy (cm) 0. 1677E-13 0. 1451E-13 0. 1210E-13 0. 8657E-14 0. 5875E-14 0. 3609E-14 0. 7058E-14 0. 0000E+00	drx 0. 2837E-02 0. 3068E-02 0. 3348E-02 0. 3704E-02 0. 3756E-02 0. 3500E-02 0. 2076E-02 0. 0000E+00	0.3628E-16 0.3024E-16 0.2164E-16 0.1469E-16 0.9023E-17 0.1764E-16	sfx (kN) 0.5144E+04 0.8306E+04 0.1073E+05 0.1243E+05 0.1242E+05 0.1368E+05 0.1450E+05 0.1450E+05	sfy(kN) 0.9031E-11 0.1748E-10 0.2489E-10 0.2757E-10 0.3404E-10 0.3691E-10 0.3727E-10 0.3727E-10		
	dx (cm) 0. 8901E+01 0. 7767E+01 0. 6540E+01 0. 5202E+01 0. 3723E+01 0. 2224E+01 0. 8303E+00 0. 0000E+00	dy (cm) 0. 5822E-13 0. 4288E-13 0. 2989E-13 0. 2070E-13 0. 1435E-13 0. 9603E-14 0. 5049E-14 0. 0000E+00	rz (rad) 0. 2971E-15 0. 2600E-15 0. 2190E-15 0. 1738E-15 0. 7822E-16 0. 2854E-16 0. 0000E+00	vx (cm/s) 0. 7102E+02 0. 6280E+02 0. 5418E+02 0. 343E+02 0. 3356E+02 0. 2101E+02 0. 8071E+01 0. 0000E+00	0. 1251E-12 0. 1137E-12 0. 9799E-13 0. 7625E-13 0. 4645E-13 0. 2068E-13	0. 5557E+03 0. 4624E+03 0. 4306E+03 0. 3914E+03 0. 3268E+03 0. 3259E+03	3 0. 1276E-11 3 0. 1099E-11 3 0. 9420E-12 3 0. 8408E-12 3 0. 6853E-12 3 0. 5067E-12 3 0. 3338E-12	D. I (F) 0. 030 0. 047 0. 037 0. 041 0. 040 0. 041 0. 026 0. 000 0. 037	D. I (F+W) 0. 028 0. 023 0. 030 0. 008 0. 011 0. 093 0. 142 0. 000 0. 093

F	story number
h	story height (cm)
<maximum relative<="" td=""><td>story displacement></td></maximum>	story displacement>
sdx	story drift in X-direction (cm)
sdy	story drift in Y-direction (cm)
drx	story drift ratio in X-direction (rotational component)
dry	story drift ratio in Y-direction (rotational component)
<maximum sh<="" story="" td=""><td>ear force></td></maximum>	ear force>
sfx	story shear force in X-direction (kN)
sfy	story shear force in Y-direction (kN)
	ment from the ground at the center of gravity in each floor>
dx	displacement in X-direction (cm)
dy	displacement in Y-direction (cm)
rz	rotational angle around Z-direction
<maximum relative<="" td=""><td></td></maximum>	
VX	velocity in X-direction (cm/sec)
VV	velocity in Y-direction (cm/sec)
<maximum absolute<="" td=""><td></td></maximum>	
ax	acceleration in X-direction (cm/sec ²)
ay	acceleration in Y-direction (cm/sec ²)
<damage index=""></damage>	. ,

D.I.(F) Damage Index of each floor (beam and column) D.I.(F+W) Damage Index of each floor (beam, column, and wall) total: average damage index of entire building

[10] "response_eigen.csv"

In this file, the results of modal analysis including natural periods, mode vectors, and stimulus functions are saved.

=== na	tural perio	d and mod	e ===			
++ 1-m	ada L I					
natural pe	1					
	T (sec)					
	0.76562					
participat						
	bx	by	bz			
	0	6.36038	0			
effective	mass ratio					
	mx	my	mz			
	0	0.78661	0			
mode vec	tor					
		mode	bx{v}	by{v}	bz{v}	
X-compo	nent					
	0F	0	0	0	0	
	1F	0	0	0	0	
	2F	0	0	0	0	
	3F	0	0	0	0	
	4F	0	0	0	0	
	5F	0	0	0	0	
	6F	0	0	0	0	
	7F	0	0	0	0	
Y-compo	nent					
	0F	0	0	0	0	
	1F	0.01921	0	0.12215	0	
	2F	0.05744	0	0.36532	0	
	3F	0.09667	0	0.61486	0	
	4F	0.13247	0	0.84253	0	
	5F	0.16294	0	1.03637	0	
	6F	0.1888	0	1.20082	0	
	7F	0.2082	0	1.32425	0	
Z-rotatio		012002		1.02.120		
2 Totatio	0F	0	0	0	0	
	1F	0	0			
	2F	0	0			
	3F	0	0			
	4F	0	0			
	41 5F	0	0			
	6F	0	0			
	ог 7F	0	0			
	15	0	0	0	0	
++ 2-m	ude ++					

[11] "response_structure.csv"

kstep	Sd(cm)	Sa(gal)	max drift			
0	0.00E+00	0.00E+00	C)		
1	1.20E-02	3.33E+01	0.00004	Ļ		
2	2.40E-02	6.67E+01	0.0008	3		
3	3.60E-02	1.00E+02	0.00012	2		
4	4.80E-02	1.26E+02	0.00016	5		
F	sdx(cm)	sdy(cm)	ssx(cm)	ssy(cm)	sfx(kN)	sfy(kN)
0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.40E+01	-1.54E-17
0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.80E+01	-1.54E-17
0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.02E+02	-1.54E-17
0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.28E+02	-3.84E-17
sbx(cm)	sby(cm)	smx(kN)	smy(kN)	dx(cm)	dy(cm)	rz(rad)
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0.00E+00	0.00E+00	-5.10E+03	-2.31E-15	0.00E+00	0.00E+00	0.00E+00
0.00E+00	0.00E+00	-1.02E+04	-2.31E-15	0.00E+00	0.00E+00	0.00E+00
0.00E+00	0.00E+00	-1.53E+04	-2.31E-15	0.00E+00	0.00E+00	0.00E+00
0.00E+00	0.00E+00	-1.93E+04	-5.75E-15	0.00E+00	0.00E+00	0.00E+00

In case of nonlinear static analysis, the following data are saved for each story.

kstep calculation step in static analysis

1	kstep	calculation step in static analysis
< Equivale	nt 1DOF s	system>
		displacement (cm)
9	sa	acceleration (gal)
1	max drift	maximum drift among all stories
<relative s<="" td=""><td></td><td></td></relative>		
		story number
9	sdx	story drift in X-direction (cm)
	sdy	story drift in Y-direction (cm)
<relative s<="" td=""><td>story displa</td><td>acement (shear component)></td></relative>	story displa	acement (shear component)>
		story drift in X-direction (shear component) (cm)
5	ssy	story drift in Y-direction (shear component) (cm)
<story she<="" td=""><td>ar force></td><td> , . , . ,</td></story>	ar force>	, . , . ,
	sfx	story shear force in X-direction (kN)
	sfy	story shear force in Y-direction (kN)
<relative s<="" td=""><td>story displa</td><td>acement (rotational component)></td></relative>	story displa	acement (rotational component)>
5	sbx	story drift in X-direction (rotational component)
5	sby	story drift in Y-direction (rotational component)
<story mor<="" td=""><td>ment></td><td>· · · · · /</td></story>	ment>	· · · · · /
	smx	story moment in X-direction (kNcm)
	smy	story moment in Y-direction (kNcm)
<displacen< td=""><td>nent from</td><td>the ground at the center of gravity in each floor></td></displacen<>	nent from	the ground at the center of gravity in each floor>
	dx	displacement in X-direction (cm)
(dy	displacement in Y-direction (cm)
	rz	rotational angle around Z-direction
		-

kstep	t	a0x	a0y	a0z	d0x	d0y	d0z
0	0	-1.40E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
5	0.02	-1.08E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
10	0.04	-1.01E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
15	0.06	-8.80E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
20	0.08	-9.50E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
F	sdx(cm)	sdy(cm)	sfx(kN)	sfy(kN)	dx(cm)	dy(cm)	rz(rad)
0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.00E+00	0.00E+00	2.35E+00	-1.53E-17	0.00E+00	0.00E+00	0.00E+00
0	0.00E+00	0.00E+00	1.10E+01	-1.31E-17	0.00E+00	0.00E+00	0.00E+00
0	0.00E+00	0.00E+00	1.81E+01	-1.39E-17	0.00E+00	0.00E+00	0.00E+00
0	0.00E+00	0.00E+00	1.61E+01	-1.48E-17	0.00E+00	0.00E+00	0.00E+00
vx(cm/s)	vy(cm/s)	ax(gal)	ay(gal)				
0.00E+00	0.00E+00	0.00E+00	0.00E+00				
0.00E+00	0.00E+00	0.00E+00	0.00E+00				
0.00E+00	0.00E+00	0.00E+00	0.00E+00				
0.00E+00	0.00E+00	0.00E+00	0.00E+00				
0.00E+00	0.00E+00	0.00E+00	0.00E+00				

In case of earthquake response analysis, the following data are saved for each story:

time step in dynamic analysis t

<Input ground acceleration>

acceleration n X-direction (cm/sec²) acceleration in Y-direction (cm/sec²) acceleration in Z-direction (cm/sec²) a0x

a0y

a0ż

<Input ground displacement (cm)> d0x

- displacement in X-direction (cm) displacement in Y-direction (cm) displacement in Z-direction (cm) d0y
- dŐz

<Relative story displacement>

F story number

sdx

story drift in X-direction (cm) story drift in Y-direction (cm) sdy

<Story shear force> sfx

story shear force in X-direction (kN) story shear force in Y-direction (kN)

sfy

<Displacement from the ground at the center of gravity in each floor> dx displacement in X-direction (cm) dy displacement in Y-direction (cm)

rotational angle around Z-direction rż

<Relative velocity>

velocity in X-direction (cm/sec) velocity in Y-direction (cm/sec) vx

vy

<Absolute acceleration> ах

acceleration in X-direction (cm/sec²) acceleration in Y-direction (cm/sec²) ay

[12] "response_member01.csv ..."

In this file, the responses of the designated members are saved.

In case of Beam

BE No.	1				
0.000 0.020 0.040 0.060 0.080	Rya -0. 7362E-21 0. 1087E-06 0. 8696E-06 0. 4024E-05 0. 9845E-05	Mya -0. 1249E-13 0. 2127E+01 0. 1702E+02 0. 7874E+02 0. 1927E+03	Uya 0. 000 0. 000 0. 000 0. 002 0. 004	Rpa Mpa -0.3669E-21 -0.1249E-13 0.6252E-07 0.2127E+01 0.5001E-06 0.1702E+02 0.2314E-05 0.7874E+02 0.5662E-05 0.1927E+03	Upa 0. 000 0. 000 0. 000 0. 001 0. 003
	Ryb -0. 4351E-21 0. 1087E-06 0. 8696E-06 0. 4024E-05 0. 9845E-05	Myb -0. 1044E-13 0. 2127E+01 0. 1702E+02 0. 7874E+02 0. 1927E+03	Uyb 0. 000 0. 000 0. 000 0. 002 0. 004	Rpb Mpb -0. 3067E-21 -0. 1044E-13 0. 6252E-07 0. 2127E+01 0. 5001E-06 0. 1702E+02 0. 2314E-05 0. 7874E+02 0. 5662E-05 0. 1927E+03	Upb 0. 000 0. 000 0. 000 0. 001 0. 003
	Dsz -0. 1311E-19 0. 2433E-05 0. 1946E-04 0. 9005E-04 0. 2203E-03	Qsz -0. 4245E-16 0. 7879E-02 0. 6303E-01 0. 2916E+00 0. 7136E+00	Usz 0. 000 0. 000 0. 000 0. 000 0. 000	Dx Nx 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	

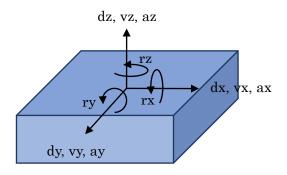
Disp.	Force.	Ductility 1	factor (kN, cm)
< Mome	nt >	-	
Rya	Mya	Uya	Member end A
Rpa	Mpa	Upa	Member end B
Ryb	Myb	Uyb	Nonlinear rotational spring at end A
Rpb	Mpb	Upb	Nonlinear rotational spring at end B
< Shear	Force >	·	
Dsz	Qsz	Usz	Nonlinear shear spring
< Axial F	Force >		1 0
Dx	Nx		Axial spring

In case of Column

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO No. 1			
0.040 -0.7746E-06 -0.3058E+02 0.000 0.1425E-07 -0.3458E+02 0.000 0.060 -0.3584E+05 -0.1415E+03 0.000 0.6608E-07 -0.6459E+02 0.000 -0.8772E+05 -0.3463E+03 0.000 0.1627E-06 -0.1580E+03 0.000 -0.4012E-01 -0.1784E+02 0.000 0.5866E-22 -0.8529E-14 0.000 -0.4518E-06 -0.1784E+02 0.000 0.8275E+08 -0.8144E+01 0.000 -0.4012E+05 -0.1585E+03 0.000 0.2805E+03 0.000 -0.2144E+04 -0.5555E+03 0.000 0.2805E+03 0.000 -0.2144E+04 -0.8464E+03 0.000 0.2805E+06 -0.2535E+03 0.000 -0.2144E+04 -0.8464E+03 0.000 -0.3975E+06 -0.3863E+03 0.000 -0.335E+20 0.6838E+16 0.000 -0.8914E+05 -0.9623E+01 0.000 -0.1528E+04 -0.1650E+00 0.000 -0.8914E+05 -0.9623E+01 0.000 -0.1528E+04 -0.1650E+00 0.000 -0.8914E+05 -0.923E+01 0.000 -0.1730E+03 -0.183E+01 -0.003 -0.4229E+03 -0.4566E+01 -0.004 -0.7725E+02 -0.2500E+03 -0.1983E+21 -0.1721E+14 -0.7725E+02 -0.2500E+03 -0.1983E+21 -0.1731E+14 -0.7725E+02 -0.2500E+03 -0.1983E+21 -0.1634E+14 -0.7699E+02 -0.2491E+03 -0.1013E+21 -0.6391E+15 -0.7694E+02 -0.2490E+03 0.1517E+21 -0.1571E+14 -0.769E+02 -0.2490E+03 0.1517E+21 -0.1571E+14 -0.769E+02 -0.2490E+03 0.1517E+21 -0.1571E+14 -0.769E+02 -0.2490E+03 0.1517E+21 -0.1571E+15 -0.3091E+02 -0.2490E+03 0.01517E+21 -0.1521E+15 -0.3091E+02 -0.2490E+03 0.01517E+21 -0.1521E+15 -0.3091E+02 -0.2490E+03 0.032 -0.3112E+02 -0.032 -0.3112E+02 -0.2393E+03 0.032 -0.3112E+02 -0.032 -0.3112E+02 -0.2393E+03 0.032 -0.3112E+02 -0.032 -0.3091E+02 -0.2912E+03 0.032 -0.3112E+02 -0.032 -0.3112E+02 -0.2912E+03 0.032 -0.3112E+02 -0.032 -0.3091E+02 -0.2912E+03 0.032 -0.3112E+02 -0.032 -0.3091E+02 -0.2912E+03 0.032 -0.3102E+02 -0.032 -0.3091E+02 -0.2912E+03 0.032 -0.3102E+02 -0.032 -0.3091E+02 -0.2932E+03 0.032 -0.3102E+02 -0.032 -0.3091E+02 -0.2932E+03 0.032 -0.3102E+02 -0.032 -0.3003E+02 -0.2912E+03 0.032 -0.3003E+02 -0.5104E+02 -0.032 -0.3003E+02 -0.2912E+03 0.032 -0.3003E+02 -0.5104E+02 -0.032 -0.3003E+02 -0.2932E+03 0.032 -0.3003E+02 -0.5104E+02 -0.032 -0.3003E+02 -0.2932E+03 0.032 -0.3003E+02 -0.5104E+02 -0.032 -0.3003E+02 -0.2932E+03 0.032 -0.3003E+02 -	0.000 -0.2659E-21 0.3	082E-15 0.000	0. 5811E-21 0. 1816E-13 0. 000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.040 -0.7746E-06 -0.3	058E+02 0. 000	0. 1425E-07 -0. 1396E+02 0. 000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.080 -0.8772E-05 -0.3	463E+03 0.000	0. 1627E-06 -0. 1580E+03 0. 000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0. 5793E-21 -0. 2	197E–13 0. 000	0. 5866E-22 -0. 8529E-14 0. 00	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0. 4014E-05 -0. 1	585E+03 0.000	0. 7376E-07 -0. 7234E+02 0. 00	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dsx	Qsx Usx	Dsy Qsy Usy	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0. 1910E-05 -0. 20	062E-01 0.000 -0	0. 8914E-05 -0. 9623E-01 0. 000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.7071E-04 -0.76	633E+00 -0.001 -0	D. 2776E-03 -0. 2996E+01 -0. 004	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dz	Nz R	z Tz	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0. 7718E-02 -0. 24	197E+03 -0. 1883E-2	1 -0. 1634E-14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0. 7694E-02 -0. 24	190E+03 0. 1517E-2	1 0. 1317E-14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.3072E-02 -0.2994E+03	0.032 -0.3072E	-02 -0.5215E+02 -0.032	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.3111E-02 -0.3033E+03	0.032 -0.3111E	-02 -0.5282E+02 -0.032	
-0.2987E-02 -0.2912E+03 0.031 -0.2987E-02 -0.5071E+02 -0.031 -0.3003E-02 -0.2927E+03 0.031 -0.3003E-02 -0.5098E+02 -0.031 -0.3026E-02 -0.2950E+03 0.032 -0.3026E-02 -0.5137E+02 -0.032 -0.3028E-02 -0.2952E+03 0.032 -0.3028E-02 -0.5141E+02 -0.032 -0.3008E-02 -0.2932E+03 0.032 ~ -0.3008E-02 -0.5106E+02 -0.032 Disp. Force. Ductility factor (kN, cm) < Moment > Rya Mya Uya End A (Bottom) Y-direction Ryb Myb Uyb End B (Bottom) Y-direction Rxa Mxa Uxa End A (Bottom) X-direction Rxb Mxb Uxb End B (Bottom) X-direction	-0.3091E-02 -0.3012E+03	0.032 ~ -0.3091E	-02 -0.5247E+02 -0.032	
-0.3026E-02 -0.2950E+03 0.032 -0.3026E-02 -0.5137E+02 -0.032 -0.3028E-02 -0.2952E+03 0.032 -0.3028E-02 -0.5141E+02 -0.032 -0.3008E-02 -0.2932E+03 0.032 ~ -0.3008E-02 -0.5106E+02 -0.032 Disp. Force. Ductility factor (kN, cm) < Moment > Rya Mya Uya End A (Bottom) Y-direction Ryb Myb Uyb End B (Bottom) Y-direction Rxa Mxa Uxa End A (Bottom) X-direction Rxb Mxb Uxb End B (Bottom) X-direction	-0.2987E-02 -0.2912E+03	0.031 -0.2987E-	-02 -0.5071E+02 -0.031	
-0.3008E-02 -0.2932E+03 0.032 ~ -0.3008E-02 -0.5106E+02 -0.032 Disp. Force. Ductility factor (kN, cm) < Moment > Rya Mya Uya End A (Bottom) Y-direction Ryb Myb Uyb End B (Bottom) Y-direction Rxa Mxa Uxa End A (Bottom) X-direction Rxb Mxb Uxb End B (Bottom) X-direction	-0.3026E-02 -0.2950E+03	0.032 -0.3026E-	-02 -0.5137E+02 -0.032	
< Moment > Rya Mya Uya End A (Bottom) Y-direction Ryb Myb Uyb End B (Bottom) Y-direction Rxa Mxa Uxa End A (Bottom) X-direction Rxb Mxb Uxb End B (Bottom) X-direction				
RyaMyaUyaEnd A(Bottom)Y-directionRybMybUybEnd B(Bottom)Y-directionRxaMxaUxaEnd A(Bottom)X-directionRxbMxbUxbEnd B(Bottom)X-direction		Ductility factor (k	N, cm)	
Rxa Mxa Uxa End A (Bottom) X-direction Rxb Mxb Uxb End B (Bottom) X-direction	Rya Mya			
	Rxa Mxa	Uxa	End A (Bottom) X-directi	on
Shear Force > Dsx Qsx Usx Nonlinear shear spring X-direction	< Shear Force >			
Dsy Qsy Usy Nonlinear shear spring Y-direction <axial force=""></axial>	Dsy Qsy			
Dz Nz Axial spring <torque force=""></torque>			Axial spring	
Rz Tz Torque spring < Multi-spring >			Torque spring	
C1D(a) C1F(a) C1U(a) End A Concrete Spring 1 C2D(a) C2F(a) C2U(a) End A Concrete Spring 2	C1D(a) C1F(a) C2D(a) C2F(a)			
C3D(a) C3F(a) C3U(a) End A Concrete Spring 3 C4D(a) C4F(a) C4U(a) End A Concrete Spring 4	C3D(a) C3F(a) C4D(a) C4F(a)	C4U(a)	End A Concrete Spring 4	
C5D(a) C5F(a) C5U(a) End A Concrete Spring 5 S1D(a) S1F(a) S1U(a) End A Steel Spring 1	S1D(a) S1F(a)	S1U(a)	End A Steel Spring 1	
S2D(a) S2F(a) S2U(a) End A Steel Spring 2 S3D(a) S3F(a) S3U(a) End A Steel Spring 3	S3D(a) S3F(a)	S3U(a)		
S4D(a) S4F(a) S4U(a) End A Steel Spring 4 S5D(a) S5F(a) S5U(a) End A Steel Spring 5	S5D(a) S5F(a)	S5U(a)	End A Steel Spring 5	
C1D(b) C1F(b) C1U(b) End B Concrete Spring 1 C2D(b) C2F(b) C2U(b) End B Concrete Spring 2	C2D(b) C2F(b)	C2U(b)	End B Concrete Spring 2	
C3D(b) C3F(b) C3U(b) End B Concrete Spring 3 C4D(b) C4F(b) C4U(b) End B Concrete Spring 4	C4D(b) C4F(b)	C4U(b)	End B Concrete Spring 4	
C5D(b) C5F(b) C5U(b) End B Concrete Spring 5 S1D(b) S1F(b) S1U(b) End B Steel Spring 1	S1D(b) S1F(b)	S1U(b)	End B Steel Spring 1	
S2D(b) S2F(b) S2U(b) End B Steel Spring 2 S3D(b) S3F(b) S3U(b) End B Steel Spring 3	S3D(b) S3F(b)	S3U(b)	End B Steel Spring 3	
S4D(b) S4F(b) S4U(b) End B Steel Spring 4 S5D(b) S5F(b) S5U(b) End B Steel Spring 5		S4U(b) S5U(b)		

In case of Wall

-0.9919E -0.1594E -0.1801E 0.1265E 0.6936E C11D -0.2905E -0.2928E -0.2946E -0.2946E	4 -0.21 4 -0.29 4 0.83 4 0.92 Rsx -08 -0.231 -06 -0.371 -06 -0.418 -06 0.294 -06 0.161	Qsx 2E+00 -C 4E+01 -C 7E+01 -C 7E+02 C 7E+02 C 7E+03 0 3E+03 0 5E+03 0 5E+03 0	1732E+04 0.000 3039E+04 0.000	-0.9263E- -0.1199E- -0.8521E- 0.1862E- 0.5574E- N: -0.5986E+(-0.6018E+(-0.6064E+(-0.6064E+(-0.6026E+(S11F(a -0.5032E+C -0.5032E+C -0.5103E+C -0.5099E+C	06 0.1631E+04 0.000 06 -0.1035E+04 0.000 2 04 04 04 04 04 04 04 04 04 04
	Disp. < Momen	Force.	Ductility factor (k	N, cm)	
	Rya Ryb Rxa Rxb	Mya Myb Mxa Mxb	Uya Uyb Uxa Uxb	End A End B End A End B	(Bottom) Y-direction (Bottom) Y-direction (Bottom) X-direction (Bottom) X-direction
	< Shear F Rsx <axial fo<="" td=""><td>Qsx</td><td>Usx</td><td>Nonlinea</td><td>shear spring X-direction</td></axial>	Qsx	Usx	Nonlinea	shear spring X-direction
	Dz < Multi-sp	Nz pring > (spr C11F(a) C12F(a) C13F(a) C14F(a) C15F(a) S11F(a) S12F(a) S12F(a) S12F(a) S12F(b) C12F(b) C13F(b) C15F(b) C15F(b) S12F(b) S1	U ings 11-15 in a wall p C11U(a) C12U(a) C13U(a) C15U(a) S11U(a) S12U(a) S12U(a) S12U(a) S14U(a) S15U(a) C11U(b) C12U(b) C13U(b) C13U(b) C15U(b) S11U(b) S12U(b) S12U(b) S12U(b) S12U(b) S12U(b) S12U(b) S12U(b) S12U(b) S12U(b) S12U(b) S12U(b) S15U(b)	panel) End A End B End B E	Concrete Spring 11 Concrete Spring 12 Concrete Spring 13 Concrete Spring 14 Concrete Spring 15 Steel Spring 12 Steel Spring 12 Steel Spring 13 Steel Spring 14 Steel Spring 15 Concrete Spring 11 Concrete Spring 12 Concrete Spring 13 Concrete Spring 13 Steel Spring 11 Steel Spring 11 Steel Spring 12 Steel Spring 13 Steel Spring 13 Steel Spring 14 Steel Spring 14 Steel Spring 14 Steel Spring 14
In case of	of Vertica				
	< Axial Fo Disp. Dz	orce > Force. Fz	Ductility Factor Uz		
In case o	of Base I				
	Disp. Dx Dy Dv	Force. Qx Qy Fv	Axial Force> Ductility Factor Ux Uy		n (Shear) n (Shear) n (Axial)
In case o	of Dampe < Shear F		nstructural Wall		
	Disp. Dx	Force. Qx	Ductility Factor Ux	X-directio	n


[13] "response_floor01.csv ..."

In this file, the responses of the center of gravity of 3D rigid floor are saved.

The 3D rigid floor is used in the following cases:

- In case "Ground Spring" (Sway and Rocking) is considered in "Option" > "Member" menu, automatically, the foundation floor is considered 3D rigid.
- In case 3D rigid is selected in "Option" > "Member" menu.

	displacement	rotation	velocity	acceleration
t	dx(cm) dy(cm) dz(cm)	rx(rad) ry(rad) rz(rad)	vx(cm) vy(cm) vz(cm)	ax(gal) ay(gal) az(gal)

11 Continuous Analysis

When you push the "Save Data" button (-
When you push the "Save Data" button (🕘) during Dynamic

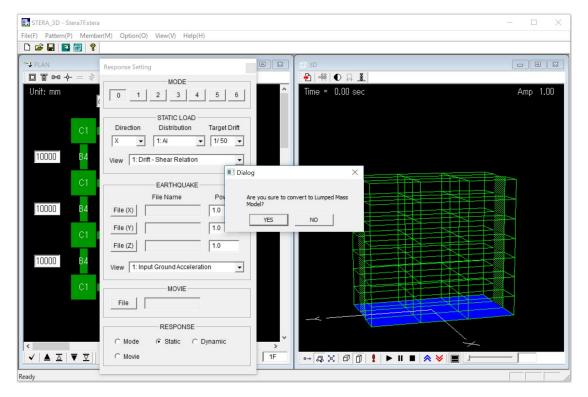
FolderDialog		×
Select folder to save ou Full path	itput files	_
Display name		OK
Continuous Analysis	0 None 0 None 1 / Initial	· · · · · · · · · · · · · · · · · · ·
	2/ Successive 3/ Final	

Please select condition of continuous analysis from the menu:

input_all.dat

0 None No continuous analysis (default) 1 /----- Initial Initial analysis (save building status after the analysis) STERA_3D input_all.dat 2 ---/--- Successive Successive analysis (read previous building status, then save it after the analysis) STERA 3D input_all.dat input_all.dat 3 -----/ Final Final analysis (read building status)

In continuous analysis, it is recommended to change the folder to save output files in each analysis, since all output files will be overwritten.

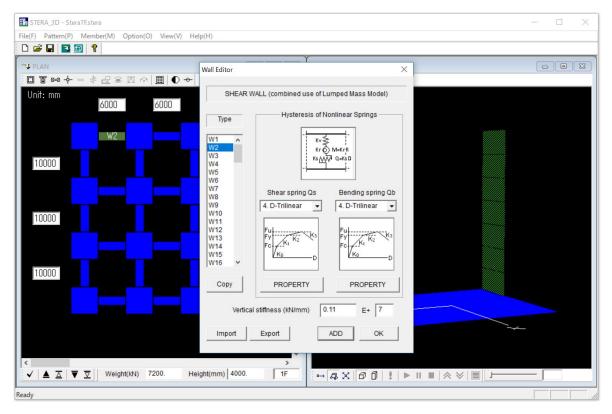

STERA_3D

12 Automatic generation of Lumped Mass Model (LMM)

🖬 STERA_3D - Stera7Fistera —	×
File(F) Pattern(P) Member(M) Option(O) View(V) Help(H)	
PLAN Response Setting	23
Image: Difference of the set of th	D
10000 B4 View 1: Drift - Shear F FolderDialog ×	
C1 EARTH EARTH Full path 10000 B4 File (X) Display name OutFiles Cancel	
10000 B4 File (2) Gi / W View 1: Input Ground Acceleration 0.6	
Image: Construction of the static for the static	

Save results of static push-over analysis.

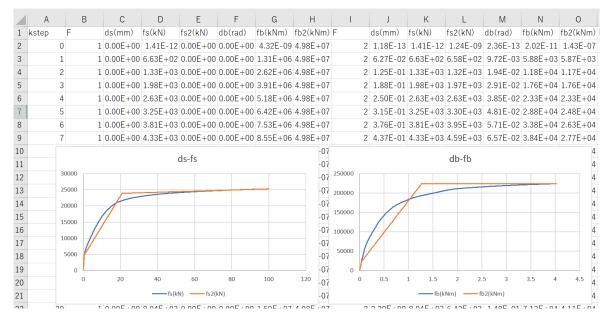
When you click the icon _____, a message appears to convert to Lumped Mass Model.


	. 🗊 🤶				
PLAN	1 5 0				
Init: mm	¥ = 📼	8 ⊠ ∲ ⊞			
	600	0 6000) 6000)	
	C1 B	3 C1 W	C1 B3	B C1	
10000	в4	B4	В4	в4	
	01 D				
	C1 B	2 C1 B2	C1 B2	C1	
10000	B4	B4	в4	B4	
	C1 B	2 C1 B2	C1 B2	C1	
10000	B4	B4	B4	B4	
	C1 B	3 C1 W	C1 B3	C1	
					~~~

If you answer YES, an equivalent LMM will be automatically created.

If you conduct static push-over analysis, you will see that the force-deformation relationship of each story is modeled as a tri-linear hysteresis model.

E STERA_3D - Stera7F.stera	– 🗆 X
File(F) Pattern(P) Member(M) Option(O) View(V) Help(H)	
™ PLAN         Response Setting           □ □ □ ∞ + = ÷         HODE	
Unit: mm (0 1 2 3 4 5 6	Image: Provide and the system         I
C1 Direction Distribution Target Drift X	
10000 B4	
C1 EARTHQUAKE	
File Name         Power           10000         B4         File (X)         1.0	
C1 File (Y) 1.0	
File (Z) 1.0	Qi / W
10000 B4 View 1: Input Ground Acceleration	0.6
C1 MOVIE	$0.3 - \underbrace{5}{5} - \underbrace{5}{7} - \underbrace{5}{7}$
	Ri 1/40 1/20
✓         ▲         ▲         ▼         ▼         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □         □	
Ready	

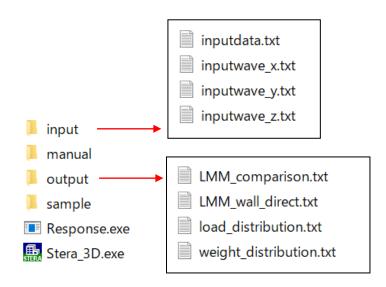

- The element model of each story is "Wall with direct input" with shear and bending springs. The hysteresis of each spring is modeled as non-linear tri-linear model.
- The element type number is "W2" for 1F, "W3" for 2F, ..., etc.
- The restrained freedom automatically set as 2467 (X-direction only).
- Floor Slab of each story is automatically set as 3D Rigid.



In "./output" folder, "LMM_comparison.txt" and "LMM_wall_direct.txt" are automatically created.



"LMM_comparison.txt" includes the data of story shear force and story displacement relationships both for frame model and LMM under static push-over analysis.




"LMM_wall_direct.txt" includes the parameters of hysteresis for shear and bending springs of Wall (direct input) model as described in 6.2 using the same format of "Data_wall_direct.txt" by [Export] button.

Please refer "Technical Manual" for the detail for how to obtain the equivalent tri-linear skelton.

## 13 Command line execution

After you save the results of analysis as described in 10.2, there are text files automatically generated in the folder of STERA_3D as shown below:



where	
inputdata.txt	Input data of structure
inputwave_x.txt	Ground acceleration data in x (horizontal)-direction (see 9.1)
inputwave_y.txt	Ground acceleration data in y (horizontal)-direction (see 9.1)
inputwave_z.txt	Ground acceleration data in z (vertical)-direction (see 9.1)
also	
load_distribution.txt	Horizontal load distribution in static analysis (see 7.2)
out_comparison.txt	Comparizon of Q-D between frame and LMM (see 11)
out_parameter.txt	Q-D parameters of LMM (see 11)
$weight_distribution.txt$	Weight distribution in a floor node (see 7.1)

When you execute "Response.exe", the analysis will start using the following files in "input" folder as input files:

inputdata.txt
inputwave_x.txt
inputwave_y.txt
inputwave_z.txt
That is, you can execute the program by command line without using STERA_3D.

From the command prompt,

C:¥Users¥SAITO¥Documents>cd STERA_3D
C:¥Users¥SAITO¥Documents¥STERA_3D>Response Execute "Response.exe"
>>>> Start elastic modal analysis
<pre>&gt;&gt;&gt;&gt; Start nonlinear dynamic analysis     1 % finished     2 % finished     3 % finished     4 % finished     5 % finished     6 % finished</pre>
94 % finished 95 % finished 96 % finished 97 % finished 98 % finished 99 % finished 100 % finished C:¥Users¥SAITO¥Documents¥STERA_3D>

For example, let's make a batch file (test.bat) to replace the earthquake ground acceleration data as

Earth_NS.txt Earth_EW.txt Earth_UD.txt

test.bat

@echo off		
сору	.¥Earth_NS.txt	.¥input¥inputwave_x.txt
сору	.¥Earth_EW.txt	.¥input¥inputwave_y.txt
сору	.¥Earth_UD.txt	.¥input¥inputwave_z.txt
Response		

If you double click "test.bat", the new anlaysis will start using new input waves.