STERA 3D ver. 11.5

<u>ST</u>ructural <u>Earthquake Response Analysis</u> 3D

斉藤大樹

豊橋技術科学大学

まえがき

本ソフトでは、鉄筋コンクリート造/鉄骨造/鉄骨鉄筋コンクリート造/免震/制振など 様々な建物の

- 弾性振動モード解析
- 1方向静的漸増載荷解析(逆三角形分布、等分布、等)
- 静的繰り返し載荷解析
- 弾塑性地震応答解析

ができます。建物データの入力から解析結果の表示まで、直感的な操作で、誰でも使えるように工夫しています。

このソフトは、

- 実建物の地震時性能の把握
- 構造実験のシミュレーション
- 学生や技術者の教育

などに広く使ってもらいたいと考えています。ただし、利用は研究および教育目的に限定さ せていただきます。

まだ開発途上ですが、とりあえず公開して、皆さんの意見を聞きながら改良を加えたいと 思っています。

また、本ソフトには、未知のバグがあるかもかもしれませんので、解析結果には責任は負 えません。もし不具合が出たときには、ご連絡くだされば可能な範囲で対処いたします。

ぜひ、お試しいただき、ご意見を頂ければ幸いです。

2015年3月1日

ソフト開発者 斉藤 大樹 豊橋技術科学大学 建築・都市システム学系 教授 tsaito@ace.tut.ac.jp

 $\mathbf{2}$

更新履歴

2016.11.12	STERA_3D Ver.8.5 をアップロードしました。
	壁(復元カデータの直接入力)の入力データを変更しました。
2016.12.03	STERA_3D Ver.8.6 をアップロードしました。
	モード分布による静的加力のエラーを修正しました。
2016.12.11	STERA_3D Ver.8.7 をアップロードしました。
	梁部材の剛性低下率を修正しました(詳しくは「技術マニュアル(Technical
	Manual)」を参照してください)。
2016.12.25	STERA_3D Ver.8.8 をアップロードしました。
	組積造、接合部の不具合を修正しました。
2017.01.18	STERA_3D Ver.8.9 をアップロードしました。
	モード解析で有効質量比が表示されるようにしました。
	節点質量を個別に指定できるようにしました。
2017.03.20	STERA_3D Ver.9.0 をアップロードしました。
	地動変位波形計算のフィルターのパラメータを指定できるようにしました。
2017.08.01	STERA_3D Ver.9.1 をアップロードしました。
	出力データの仕様を変更しました。
2017.09.11	STERA_3D Ver.9.2 をアップロードしました。
	免震部材の NRB にハードニングモデルを追加しました。
2017.10.08	STERA_3D Ver.9.3 をアップロードしました。
	地盤ばねを追加しました。
2017.10.24	STERA_3D Ver.9.4 をアップロードしました。
	ダンパーと組積造の"上の梁の種類番号"を"none"から"rigid"(剛梁)に
	変更しました。
2017.11.27	STERA_3D Ver.9.6 をアップロードしました。
	Ver.9.4 の質量設定の間違いを修正しました(なお、Ver.9.3 では質量は正し
	く設定されています)。
2019.2.03	STERA_3D Ver.10.0 をアップロードしました。
	床に起振機を設置して強制的に加振できるようにしました。
	テキストからコマンドラインで実行できるようにしました。
	骨組モデルから多質点系モデルを自動構築できるようにしました。
	水平力の高さ分布をユーザーが設定できるようにしました。
	パッシブダンパーに非線形バネを追加しました。
2019.5.20	STERA_3D Ver.10.1 をアップロードしました。
	地盤ばねに逸散減衰を考慮できるようにしました。
2019.7.25	STERA_3D Ver.10.2 をアップロードしました。
	動的な風圧力を建物に作用できるようにしました。
2019.10.08	STERA_3D Ver.10.3 をアップロードしました。

STERA 3D 使用法

	鉄骨部材の座屈履歴を考慮できるようにしました。
	動的入力(地震動や風)に対する連続解析ができるようにしました。
2020.03.16	STERA_3D Ver.10.4 をアップロードしました。
	地盤ばねに杭を考慮できるようにしました。
	鉛直ばねに空気ばねを追加しました。
2020.04.14	STERA_3D Ver.10.5 をアップロードしました。
	床の一部だけ剛にできるようにしました。
2020.06.11	STERA_3D Ver.10.6 をアップロードしました。
2020.08.04	STERA_3D Ver.10.7 をアップロードしました。
	鉄筋サイズを表から選択できるようにしました。
2020.09.24	STERA_3D Ver.10.8 をアップロードしました。
2021.10.10	STERA_3D Ver.11.0 をアップロードしました。
	RC 柱部材と RC 壁部材の曲げばねに、 X, Y 各方向独立の曲げばねモデルを
	選択できるようにしました。
	鉄骨梁部材に、履歴ダンパー用の非線形せん断ばねを導入しました。
	部材の損傷度を計算するようにしました。
2022.08.22	STERA_3D Ver.11.1 をアップロードしました。
	柱と梁(復元カデータの直接入力)の入力画面を変更しました。
	外部ばねに「ベースプレート」と「振り子ばね」を追加しました。
2022.12.14	STERA_3D Ver.11.2 をアップロードしました。
	免震部材に FPB(摩擦振り子支承)を追加しました。
2023.03.10	STERA_3D Ver.11.3 をアップロードしました。
	組積造の圧縮強度の式を変更しました。
2023.06.06	STERA_3D Ver.11.4 をアップロードしました。
	パッシブ制振部材に粘弾性ダンパーを追加しました。部分固定床の自由度
	を拘束できるようにしました。
2024.07.15	STERA_3D Ver.11.5 をアップロードしました。
	直接梁のせん断ばねに粘弾性ダンパーを追加しました。
	出力ファイルの一部を csv 形式にしました。

4

簡易マニュアル (とにかく試してみよう)

阪神淡路大震災の神戸の記録で

建物を揺らしてみよう

STERA 3D

<u>ST</u>ructural <u>Earthquake Response Analysis 3D</u>

豊橋技術科学大学

STERA 3D 使用法

② アイコン **振** をダブルクリック

(2) "ファイル" → "開く"で 建物データ "Stera7F"をオープン

STERA 3D 使用法

建物をいろいろと動かしてみよう

STERA_3D - St	era7F.stera		. II − ² /1 D		- 🗆 X
D 🗃 🖬 🔡	P) ≣P43(M) X	ノション(U) 表示(V)	ヘルノ(H)		
THE PLAN					
		8 ⊠ ∲ 🔳 () +		
Unit: mm	6000	6000	6000		
	C1 B3	C1 W1	C1 B3	C1	
10000	В4	В4	B4	В4	
	C1 B2	C1 B2	C1 B2	C1	
10000	В4	В4	B4	В4	
	C1 B2	C1 B2	C1 B2	C1	
10000	B4	B4	B4	B4	
	C1 B3	C1 W1	C1 B3	C1	
<	▼ ⊽ 層重	量(kN) 7200.	階高(mm)	4000. 1F	
Ready					
incudy					John //

- ① 🗊 をクリックして、実際の寸法で表示します。
- ② 画面の上をマウスで右クリックしながらドラッグすると 建物が回転します。
- ③ 画面の上をマウスで左クリックしながらドラッグすると
 建物が拡大・縮小します。

建物を地震で揺らしてみよう

③ <u>ファイル(X)</u>をクリックして、X 方向の地震波データを選択します。 例えば、神戸海洋気象台の EW 方向の波"Kobe_1995_EW"とします。

④ <u>ファイル(Y)</u>をクリックして、Y方向の地震波データを選択します。 例えば、神戸海洋気象台の NS 方向の波"Kobe_1995_NS"とします。

⑤ ファイル(Z) をクリックして、Z 方向の地震波データを選択します。 例えば、神戸海洋気象台の UD 方向の波"Kobe_1995_UD"とします。

- ⑥ ▶ をクリックすると応答が開始します。
 - をクリックすると応答が一時停止します。
 - をクリックすると応答が停止します。
 - ∧ をクリックすると揺れが拡大されます。
 - ✓ をクリックすると揺れが縮小されます。
 - をクリックすると画面の切り替えができます。

STERA 3D 使用法

使用方法

目次

1 解析の基本仮定	15
2 ファイル構成	16
3 初期画面	17
4 部材パターンのセット	18
5 建物情報、部材情報の初期設定	20
5.1 メニュー画面	20
5.2 メニューのアクティブ化	21
5.3 スパン数や階数の変更	25
6 部材情報の入力	26
6.1 柱(RC 造)	26
6.2 梁(RC 造)	29
6.3 壁(RC 造)	31
6.4 柱(S 造)	32
6.5 梁(S 造)	33
6.6 壁(S造ブレース)	34
6.7 柱(SRC 造)	35
6.8 梁(SRC 造)	36
6.9 壁(SRC 造)	37
6.10 柱(復元カデータの直接入力)	40
6.11 梁(復元カデータの直接入力)	43
6.12 壁(復元カデータの直接入力)	44
6.13 柱(混合構造)	47
6.14 梁(混合構造)	49
6.15 壁(混合構造)	50
6.16 床スラブ(面内剛)	51
6.17 床スラブ(完全剛)	51
6.18 床スラブ(弾性床)	52
6.19 床スラブ(混合)	53
6.20 接合部	54
6.21 外部ばね	55
6.22 免震部材	57
6.23 パッシブ制振部材	66
6.24 組積造壁	69
6.25 地盤ばね(コーンモデル)	71
6.26 地盤ばね(直接)	73

7	解析条件の初期設定	75
7.1	拘束自由度、剛床仮定、P-Δ 効果、質量分布	75
7.2	静的解析条件	
7.3	動的解析条件	
8	建物および解析結果の3D表示	
8.1	建物の3D表示	
8.2	弾性モード解析	
8.3	1 方向静的漸増載荷解析	85
8.4	弹塑性地震応答解析	88
8.5	弹塑性起振機加振解析	
8.6	風圧力解析	
8.7	出力部材の指定	
8.8	建物の地震応答アニメーション・ムービーの保存と再生	
8.9	解析の切り替え	
9	入力地震動ファイル	
9.1	入力地震動ファイルの書式	
10	建物ファイルの保存と読み込み	100
10.1	1 建物ファイルの保存	100
10.2	2 解析結果のテキストファイルへの出力	101
10.3	3 出力テキストファイル	103
11	連続解析	120
12	多質点系モデルの自動生成	121
13	コマンドラインでの実行	125

- 1 解析の基本仮定
- 基本設定では床は面内変形に対して剛とし、面外方向のみ変形します(剛床仮定)。オプションで床部材を弾性有限要素として、床の吹き抜けや面内変形を考慮することができます。
- 部材は、床を除き、線材に置換しています。
- 梁は、両材端に弾塑性曲げバネおよび部材中央に弾塑性せん断バネを有する部材モデルを 使用しています。
- 柱は、軸力と曲げの非線形相互作用が考慮できる MS モデル(両材端の断面内にそれぞれ 非線形軸ばねを配置し、部材中央に水平方向の弾塑性せん断ばねを有するモデル)を使用 しています。
- 壁は、軸力と曲げの非線形相互作用が考慮できる MS モデル(両材端の断面内にそれぞれ 非線形軸ばねを配置し、壁パネルおよび側柱のそれぞれに弾塑性せん断ばねを有するモデ ル)を使用しています。
- 鉄骨ブレースは非線形軸ばねを有するトラスモデルを使用しています。
- 基礎には、基礎固定、ピン、免震要素または浮き上がりバネを設定できます。
- 免震要素には MSS モデル(多方向非線形せん断ばねモデル)を使用しています。
- 制振要素には、柱・梁構面のせん断変形に依存するパッシブ型のエネルギー吸収部材を使 用しています。
- 組積造壁は面内のせん断破壊および滑り破壊を表す非線形せん断ばねを使用しています。
- 接合部のせん断変形は剛または弾性に設定することができます。
- ・ 地震応答解析では、基本設定では剛性比例型の減衰とし、オプションで、瞬間剛性比例型
 ・ やレーリー型を選択できるほか、減衰定数を変えることができます。

その他、細かい解析仮定とそれらの変更方法については、「技術マニュアル(Technical Manual)」をご覧ください。

2 ファイル構成

フォルダ「STERA_3D_J V*.*」の中に、以下のファイルおよびフォルダがあることを確認 してください。

Stera_3D_J.exe		メインプログラム	この4つは常に同じ	
Response.exe		… 出カ用のサブプログラム	フォルダに入れて	
input /	1	入力用フォルダ(最初は空)	おいてください。	
output/		… 出力用フォルダ(最初は空)		
manua	al/	マニュアル用フォルダ		
	STERA_user_manual_j	… ユーザーマニュアル(日本語)		
	STERA_technical_manual	… 技術マニュアル(英語)		
sampl	e/	サンプル用フォルダ		
	building/	建物サンプル用フォルダ		
	wave/	入力地震動サンプル用フォルダ		

3 初期画面

"Stera_3D_J.exe" をダブルクリックします。 左画面は、"プラン入力画面"で、ここに部材の平面配置を入力します。 右画面は、"3D表示画面"で、建物の形状や解析結果の応答を見ることができます。 また、保存した建物ファイルを開くには、[File]→ [Open]でファイルを選択します。

E STERA_3D - Stera1	- 🗆 X
ノアイル(F) フラン(P) 部材(M) オフション(O) 表示(V) ヘルノ(H) □ 2章 🔲 🔯 🗐 💡	
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
Unit: mm	
	*
✓ ▲ 五 ▼ 豆 層重量(kN) 0. 階高(mm) 0. IF → Q X 6	
Ready	

プラン入力画面

3D 表示画面

4 部材パターンのセット

プラン入力画面は、1F(階数は右下に表示)のプランから始まります。

- マウスクリックで部材がセットされます。
- クリックを繰り返すと、基礎階を除く一般階では、

◇ 柱(緑) → なし → 柱(緑)
 ◇ 梁(緑) → 壁(濃緑) → なし → 梁(緑)
 の順でセットされます。基礎(BF)については、
 ◇ 基礎ばね(茶) → なし → 基礎ばね(茶)
 の順になります。「なし」は固定になります。

ただし、オプションで、免震部材、制振部材、組積壁、外部ばねを考慮する場合には、 一般階では、

- ◇ 柱(緑) → 免震部材 → なし → 柱(緑)

の順になります。

- ◆ コントロールキー(Ctrl)を押しながら部材をクリックすると直ちに消去されます。
- マウスをドラッグ(押したまま移動)すれば、領域内の部材を一度にセットできます。
- セットされた部材について、マウスを右クリックすると、部材種類番号(柱は C1~C100、
 梁は B1~B100、壁は W1~W100 など)をセットできます。
- 他の階に移動したり、入力したプランのパターンを削除(クリア)したりコピーしたりす るには、画面の下のボタンを使用します。

入力したプランは、3D表示画面で確認ができます。

STERA 3D 使用法

5 建物情報、部材情報の初期設定

5.1 メニュー画面

5.2 メニューのアクティブ化

🖸 🖬 🕂 = 孝 🛎 🖾 🏫 🧮 🔵 🔶

初期設定では、

- 部材は「鉄筋コンクリート造」です。
- 柱・梁・壁・接合部以外の部材は非アクティブになっており、選択することができません。

初期設定の条件を変えたいときには、メニューの[オプション]から[部材]を選択します。


```
オプション → 部材
```

部材オプション		×
柱部材一切分子	震部材	
[1] 『RC CS CSRC C直接 C混合[6] 『考慮しない	○ 考慮する	
· 深部材 · · · · · パッシ	ブ制振部材	
[2] • RC O S O SRC O 直接 O 混合[7] ・考慮しない	○ 考慮する	
壁/ブレース部材 細	積造壁	
[3] ^{• RC} CS OSRC 直接 混合[8] ^{• 考慮しない}	○ 考慮する	
床スラブークト部はお	3(基礎以外)	-
[4] • 面内剛 ○ 完全剛 ○ 弾性床 ○ 混合[9] • 考慮しない	○ 考慮する	
地盤はねーー非線研	ミせん断ばね	
[5] ° なし	・ 考慮する	
ヤンヴ率 (N/mm2) 非線	形曲げばねーーーーー	
[12] 鉄 205 *1000 [11] ⊂ 考慮しない	◎ 考慮する	
13] 鉄筋サイズ表 1. Japan/ U.S. マ セット		
	ОК	

[1] 柱部材

RC: RC 造、S: 鉄骨造、SRC: SRC 造、直接: 復元カデータ入力、混合: 混合構造 [2] 梁部材

RC: RC 造、S: 鉄骨造、SRC: SRC 造、直接: 復元カデータ入力、混合: 混合構造 [3] 壁/ブレース部材

RC: RC 造、S: 鉄骨造、SRC: SRC 造、直接: 復元カデータ入力、混合: 混合構造 (S 造および SRC 造は、鉄骨ブレースを有する)

- [4] 床スラブ 面内剛(剛床仮定)、完全剛、弾性床(弾性平面 FEM 要素)、混合: 階ごとに指定
- [5] 地盤ばね なし、コーンモデル(複素剛性の計算)、直接(剛性および減衰係数)
- [6] 免震部材 免震部材を使用します。
- [7] パッシブ制振部材 パッシブ制振部材(履歴型または粘性型)を使用します。
- [8] 組積造壁部材 せん断耐力低下型の組積造壁を含めます。
- [9] 外部ばね(基礎以外)
 基礎ばね以外にも外部ばね(鉛直、水平)を考慮します。空気ばねも含みます。
 [10] 非線形せん断ばね
- 柱・梁・壁部材の非線形せん断ばねを考慮します(考慮しない場合は弾性ばね) [11] 非線形曲げばね
 - 柱・梁・壁部材の非線形曲げばねを考慮します(考慮しない場合は弾性ばね)
- [12] 鉄筋のヤング係数を入力します。

[13] 鉄筋サイズを表から選択します。

ディフォルトは、Japan / U.S. (日本と米国の規格)です。 鉄筋サイズ表 1. Japan/U.S. ▼ セット 「セット」をクリックすると内容を確認することができます。

41	なサイブ主						\sim		
	刷リイス衣						^		規格にないオリジナルの鉄筋
	鉄筋サイズお	うよび面積 (m	nm2)						サイズ(断面積)を定義する
	規格				ーオリジナ	л — —			ことができます。
	D 6(# 2)	31.67	D29(# 9)	642.4	S 1	0	4		
	D 8	49.51	D32(#10)	794.2	S 2	0			
	D10(#3)	71.33	D35	956.6	S 3	0			
	D13	126.7	D38	1140	S 4	0]		
	D16	198.6	D41	1340	S 5	0			
	D19(#6)	286.5	D51	2027	S 6	0			
	D22(# 7)	387.1			S 7	0]		
	D25(# 8)	506.7			S 8	0			
	#	¢2∼#10	は米国の規	格です		OK			

プルダウンメニューから Euro (Eurocode)を選択できます。

鉄筋サイズ表 2. Euro セット

쇐	(筋サイズ表							×
	鉄筋サイズ	および面積 (mr	n2)					
	─規格───					ーオリジナ		
	D 6	28.27	D28	615.75		S 1	0	·
	D 8	50.27	D32	804.25		S 2	0	
	D10	78.54	D40	1256.64		S 3	0	
	D13	113.1	D50	1963.5		S 4	0	
	D16	153.94	\sim			S 5	0	
	D16	201.06	\sum			S 6	0	
	D20	314.16	断面	積は D を	直	S 7	0	
	D25	490.87	径と	する円の面	積	S 8	0	
			- に-	致します。				_
			A = :	$\pi \mathrm{D}^2/4$			OK	

5.3 スパン数や階数の変更

建物規模情報(ボタン

建物エディタ	
階数/スパン数	
Y1 ₂₂ Y1 ₂₂ X1 X2 X3 Y1 ₂₂ Y1 ₂₂ Y1 X1 X2 X3 Y1	
最大階数 H 8 ▼	
最大スパン数 X 3 マ	
Y 3 -	

- 初期設定では

階数	:	8	
スパン数	:	X 方向	З
スパン数	:	Y 方向	З

最大規模は

-

階数 :	最大 61	
スパン数:	X 方向 最大	30
スパン数 :	Y 方向 最大	20

- 建物エディタ \times 階数/スパン数 НЗ 11 Π H2 🔳 クリア \times 全ての建物情報を初期化しますか? いいえ はい 最大スパン数 X 3 • Y 3 -キャンセル OK
 - すでに入力した建物情報を初期化するかどうか
 を聞いてきます。「いいえ」とすると、建物情報が保存されたまま規模だけ変更されます。

6 部材情報の入力

6.1 柱(RC 造)

柱情報 (ボタン回)

部材エディタ	×
	RC柱
種類番号 C1 C2 C3 C4 C5 C6 C7	寸法 (mm) B 600 d1 40 D 600 d2 40 d1 40 d1
C8 C9 C10 C11 C12 C13 C14 C15 C16	王筋 四隅 4 - D22 ▼ X-方向 2 ▼ - D22 ▼ Y-方向 2 ▼ - D22 ▼ (N/mm2) Y-方向 2 ▼ - D22 ▼ SD 295
כצ-	X-方向 2 🗸 - D13 🗸 - @ 100 🗸
	Y-方向 2 • - D13 • -@ 100 •
	SD 295
	コンクリート強度 (N/mm2) Fc 24 オプション
	データ入力 データ出力 追加 OK

断面サイズを入力して下さい。

-

-

ここに、d1, d2 はそれぞれ X 方向、Y 方向の主筋までの距離、複数配筋の場 合は鉄筋重心までの距離を入力して下 さい。

- 配筋はメニューから選択して下さい。
- 鉄筋強度 SD とコンクリート強度 Fc は 直接入力して下さい。
- [追加]で入力をセットし、次の部材種 類へ移動します。
- [コピー]で前の部材種類の情報をコピ ーできます。

部材種類の最後の"Cdef"を選択して 入力した数値を初期値として全ての部 材に適用することができます。

C7 C8 C9 C10	主筋 四隅 4 - □22 ▼
C11 C12 C13	<u>X-方向 2 マ - D22 マ (N/mm2)</u> Stera SD 295
C14 C15 C16	Exporting data is finished.
	@ 100 ▼ OK @ 100 ▼
	SD 295
	コンクリート強度(N/mm2) Fc 24 オブション
•	データ入力 データ出力 追加 OK

- 「データ出力」で、部材データをテキ ストファイルに出力できます(ファイ ル名は"Data_column_rc.txt")。
- 「データ入力」で、テキストファイル を選択して、データを一括入力できま す。

. . .

Data_column_rc.txt はタブで仕切られたテキスト形式です。

n 1 2 3 4 5 6 7 8 9 10 11 12	₩idth(mm) 600 600 600 600 600 600 600 600 600 60	Height (mm) 600 600 600 600 600 600 600 600 600 60	d1 40 40 40 40 40 40 40 40 40 40 40 40 40	d2 40 40 40 40 40 40 40 40 40 40 40 40	vsize_C 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	vno_X 1 1 1 1 1 1 1 1 1 1 1 1 1
			• • •			

・ 地震応答解析における数値積分法として、平均加速度法と Operator Splitting 法が選択できます。初期値は数値的に安定な平均加速度法としています。

RCオプション	
R1 : 剛性低下率 [0, 1]	0.5
R2:スリップ剛性率 [0, 1]	0
R3 : 耐力低下率 [0, 1]	0
	OK

[オプション] で設計強度と実強度の 比(初期値は1.1)を設定できます。

-

-

- 非線形曲げばねとして、「各方向独立ば ね Mx, My」と「Mx-My-N 相互作用ばね (MSS モデル)」のいずれかを選択でき ます。初期設定は MSS モデルです。
 - 非線形せん断ばねとして、「各方向独立 ばね Qx, Qy」と「Qx-Qy-N 相互作用ば ね(塑性論モデル)」のいずれかを選択 できます。初期設定は、各方向独立ば ねです。
 - せん断ひび割れ耐力 Qc は降伏耐力 Qy との比率で定義されます。初期値は 1/3です。
 - 降伏後の剛性 K2 は初期剛性 K0 との比 率で定義されます。初期値は 0.001 で す。(負剛性にすることもできます。)
 - つり合い軸力 NO は圧縮軸耐力 Nc との 比率で定義されます。初期値は 0.5 で す。
 - [オプション] で材端曲げばねの履歴 特性として、以下のパラメータを設定 できます。
 - ・剛性低下率 R1 (初期値は 0.5)
 - ・スリップ率R2(初期値は0.0)
 - ・繰り返しによる耐力低下率 R3(初期 値は 0.0)

これらのパラメータの詳細については 技術マニュアルをご覧ください。

6.2 梁(RC 造)

梁情報 (ボタン) (ボタン)

部材エディタ	
	RC梁
種類番号 B1 ▲ B3 = B4 = B5 = B6 = B7 =	寸法 (mm) B 300 d1 40 D 600 d2 40 S 150
B7 B8 B9 B10 B11 B12 B13 B14	主筋 上端 2 ▼ - D22 ▼ (N/mm2) 下端 2 ▼ - D22 ▼ SD 295
B15 B16 B17 B18	せん断補強筋 2 ▼ - D13 ▼ - @ 150 ▼ SD 295
שצ~	スラブ補強筋 1 ▼ - D13 ▼ - @ 200 ▼ SD 295
	コンクリート強度 (N/mm2) Fc 24 オプション
	データ入力 データ出力 追加 OK

断面サイズを入力して下さい。

-

-

d1, d2 はそれぞれ上端、下端の主筋ま での距離、複数配筋の場合は鉄筋面積 重心までの距離です。

- 配筋はメニューから選択して下さい。
- 材料強度(SD と Fc)は直接入力して 下さい。
- [追加]で入力をセットし、次の部材種類 へ移動します。
- [コピー]で前の部材種類の情報をコピー できます。
- 部材種類の最後の"Bdef"を選択して入
 カした数値を初期値として全ての部材
 に適用することができます。
- 「データ出力」で、部材データをテキ ストファイルに出力できます(ファイ ル名は"Data_beam_rc.txt")。
- 「データ入力」で、テキストファイル を選択して、データを一括入力できま す。

オプションエディタ			
深オブション			
1. 鉄筋強度の割り増し係数 [0,2]	1.1		
2. Rs : スラブ寄与率 [0,0.5]	0.1		
3. R1 : 剛性低下率 [0,1]	0.5		
4. R2 : スリップ剛性率 [0,1]	0		
5. R3 : 耐力低下率 [0,1]	0		
6. Ru:終局回転角 [0,1]	0.02		
7. Kp/Ky : 『峰伏後岡州性比 [0, 1]	0.001		
8. Ku/Ky : 終局後剛性比 [-1, 1/1000]	0.001		
	ОК		
8. Ku/Ky : 終局後剛性比 [-1, 1/1000]	0.001		

- [オプション]で設計強度と実強度の
 比(初期値は 1.1)及び有効スラブ幅
 比 Rs(初期値は 0.1)を設定できます。

材端曲げばねの履歴特性として、以下 のパラメータを設定できます。

・剛性低下率 R1 (初期値は 0.5)

-

- ・スリップ率 R2(初期値は 0.0)
- ・繰り返しによる耐力低下率 R3(初期 値は 0.0)
- ・終局回転角 Ru(初期値は1/50)
- ・降伏後の剛性比(初期値は0.001)
- ・Ru 以降の剛性比(初期値は 0.001)

これらのパラメータの詳細については 技術マニュアルをご覧ください。

6.3 壁(RC 造)

壁情報(ボタン国)

部材エディタ	x
RC 壁	
種類番号 W1 W2 W3 W4 W5 W6 W7	
W7 W8 W9 W10 W11 W12 W13 ▼	
」コンクリート強度(N/mm2) Fc 24	
オプション	
データ入力 道加OK	

オプションエディタ	×
壁オブション	
1. 鉄筋強度の割り増し係数 [0,2]	1.1
2. 剛性低減率 (0-2)	0.2
3. 耐力低減率 (0-2)	1
	ОК

断面サイズを入力して下さい。

-

- 配筋はメニューから選択して下さい。
- 材料強度(SD と Fc)は直接入力して下 さい。
- [追加]で入力をセットし、次の部材種 類へ移動します。
- [コピー]で前の部材種類の情報をコピ ーできます。
- 部材種類の最後の"Wdef"を選択して 入力した数値を初期値として全ての部 材に適用することができます。
- 「データ出力」で、部材データをテキ ストファイルに出力できます(ファイ ル名は"Data_beam_wall.txt")。
- 「データ入力」で、テキストファイル を選択して、データを一括入力できま す。

- [オプション]で

設計強度と実強度の比(初期値は 1.1)と壁の剛性低減係数(初期値は 0.2)及び壁のせん断耐力の低減係数 (初期値は1.0)を設定できます。

6.4 柱(S造)

柱情報 (ボタン回)

- プルダウンメニューから断面形状を選びます。
- 断面サイズを入力して下さい。
- 材料強度(Fy)は直接入力して下さい。
- [追加]で入力をセットし、次の部材種 類へ移動します。
- [コピー]で前の部材種類の情報をコピ ーできます。
- 部材種類の最後の"Cdef"を選択して 入力した数値を初期値として全ての部 材に適用することができます。
 - 「データ出力」で、部材データをテキ ストファイルに出力できます(ファイ ル名は"Data_column_steel.txt")。
 - 「データ入力」で、テキストファイル を選択」 ケーデータを一圩 λ カできま

	鉄骨柱相	1ブション	
1.材料強度割増	率 [0, 2]		1.1
2. Kp/Ky : 降伏後	剛性率 [0, 1]		0.001
· 座屈 ・ 考慮しない	○ 考慮する	R:有効細長比	60

[オプション] で鉄筋の公称強度と実強 度の比(初期値は 1.1)、降伏後の剛性 比(初期値は 0.001)を設定できま す。

座屈による非線形履歴を考慮すること ができます。初期値は「考慮しない」。 考慮する場合は有効細長比の値を入力 します。

6.5 梁(S造)

梁情報 (ボタン回)

	鉄骨梁	
種類番号 B1 B2 B3	寸法 (mm) H B H - 600 300	t1 t2 10 10
B4 ' B5 B6 B7 B8 B9 B10 B11 B12 B13	村料強度 (N/mm2) Fy 325 ヤング率 (N/mm2) E 205 *1000	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
B14 B15 D16		オブション

オプションエディタ	\times
鉄骨梁オプション	
1. 材料強度割增率 [0, 2]	1.1
2. Kp/Ky : 降伏後剛性率 [0, 1]	0.001
3. スラブによる曲げ剛性増加率 [0, 2]	1.2
●4.座屈 ● 考慮しない ● 考慮する R:有効細長比	60
	ОК

- 断面サイズを入力して下さい。
- 材料強度 (Fy) とヤング率(E)は直接入力 して下さい。
- 「オプション」で鉄骨梁の材料特性やスラ
 ブ効果、座屈の考慮を入力します。
- · [属性] で復元力特性のパラメータを入力 します。
- [追加]で入力をセットし、次の部材種類 へ移動します。
- [コピー]で前の部材種類の情報をコピー できます。
- 部材種類の最後の"Bdef"を選択して入 カした数値を初期値として全ての部材に 適用することができます。
- 「データ出力」で、部材データをテキス トファイルに出力できます(ファイル名 は"Data_beam_steel.txt")。
- 「データ入力」で、テキストファイルを 選択して、データを一括入力できます。
- [オプション] で鉄筋の公称強度と実 強度の比(初期値は 1.1)、降伏後の剛 性比(初期値は 0.001)、スラブによる 梁の曲げ剛性増加率(初期値は 1.2) を設定できます。

なお、この値は片側スラブの場合で、 両側スラブの場合は値が二乗になりま す。

座屈による非線形履歴を考慮すること ができます。初期値は「考慮しない」。 考慮する場合は有効細長比の値を入力 します。

-

6.6 壁(S 造ブレース) ^{壁情報(ボタン</sub>IPPI)}

	鉄骨ブレース		
種類番号 ₩1 ▲	「上の梁の種類種 日1	i号 ▼	
W3 W4 W5 W6		7	
W8 W9 W10 W11	 ● タイブ1 ○ タイブ2 ○ タイブ3 ○ タイブ4 ○ ○ タイブ4 ○ タイブ4 ○ タイブ4 ○ タイブ4 ○ タイブ4 ○ タイブ4 ○ タイブ	いづ5	
W12 W13 W14 W15 W16 W17	 ○ 弾性 ○ 履歴 1. (BRB) Bilinear ▼ 属性 		

属性エディタ	×
ブレース特性	E
ブレース断面積 (mm2)	300
鉄骨材料強度 (N/mm2)	490
R:有効細長比	60
	ОК

- ブレースの上に梁がある場合には、
 上の梁の種別番号で、そのタイプ番
 号をメニューから選択して下さい。
- ブレースの向きを Type1~Type5 の
 中から選んでください。
- 軸方向荷重変形関係を"弾性"と
 "履歴"から選択します。
- "履歴"は"(BRB)Bilinear (バイ リニア履歴の座屈拘束ブレース)" と"Wakabayashi" (座屈の若林モ デル)から選択します。
- 「追加]で入力をセットし、次の部材
 種類へ移動します。
- [コピー]で前の部材種類の情報をコ ピーできます。
- 部材種類の最後の"Wdef"を選択し て入力した数値を初期値として全て の部材に適用することができます。
- 「データ出力」で、部材データをテ キストファイルに出力できます(ファイル名は"Data_brace.txt")。
- 「データ入力」で、テキストファイ ルを選択して、データを一括入力で きます。
- [属性]でブレース断面積、鉄骨材
 料強度、有効細長比を入力します。

6.7 柱(SRC 造)

柱情報(ボタン回)

部材工ディタ					
RC柱					
種類番号 C1 ▲ C2 E C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C15	寸法 (mm) B 600 d1 40 D 0 <	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $			
78-	2 ∧⊎лтяраял X-方向 2 ▼ - D13 ▼ - @ 100 ▼	tw 6			
	Y-方向 2 ▼ - D13 ▼ - @ 100 ▼ SD 295	τ)			
	コンクリート強度(N/mm2) Fc 24 オブション データ入力 データ出力				

- RC 造部分は、RC 造の柱と同じです。
- [オプション]も、RC 造の柱と同じです。
- S造部分のサイズ (h1, b1, tw, tf) を入力してください。
- 鉄骨の材料強度(Fy)を入力して下さい。
- [追加]で入力をセットし、次の部材種類へ移動します。
- [コピー]で前の部材種類の情報をコピーできます。
- 部材種類の最後の"Cdef"を選択して入力した数値を初期値として全ての部材に適用することができます。
- 「データ出力」で、部材データをテキストファイルに出力できます(ファイル名 は"Data_column_src.txt")。
- 「データ入力」で、テキストファイルを選択して、データを一括入力できます。

6.8 梁(SRC 造)

梁情報(ボタン回)

部材エディタ		—				
RC 20						
種類番号 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17	$T \gtrsim (mm)$ $B = 300$ $d1 = 40$ $D = 600$ $d2 = 40$ $S = 150$ $I = 10^{-1}$ <t< td=""><td>s (mm) 1 600 1 200 w 6 f 9</td></t<>	s (mm) 1 600 1 200 w 6 f 9				
<u> コピー</u>	スラブ補強筋 ● ● 200 ▼ SD 295 ●	強度(N/mm2) y 325				

- RC 造部分は、RC 造の梁と同じです。
- [オプション]も、RC 造の梁と同じです。
- S造部分のサイズ (h1, b1, tw, tf) を入力してください。
- 鉄骨の材料強度(Fy)を入力して下さい。
- [追加]で入力をセットし、次の部材種類へ移動します。
- [コピー]で前の部材種類の情報をコピーできます。
- 部材種類の最後の"Bdef"を選択して入力した数値を初期値として全ての部材に適用することができます。
- 「データ出力」で、部材データをテキストファイルに出力できます(ファイル名 は"Data_beam_src.txt")。
- 「データ入力」で、テキストファイルを選択して、データを一括入力できます。
6.9 壁 (SRC 造)

壁情報(ボタン📟)

部材エディタ	— X
SRC 壁	
種類番号 W1 W2 W3 W4 W5 W6 W7 W2 L L L L L L L L L L L L L	 [
W9 W9 W10 W11 W12 W13 ▼ - @ 150 ▼ 295 R (deg.) 30	
コピー コンクリート強度 (N/mm2) Fc 24 Fy 325	
オプション	
データ入力 データ出力 追加 OK	

- RC 造部分は、RC 造の壁と同じです。
- [オプション]も、RC 造の壁と同じです。
- S造ブレースの断面積(As)と角度(R)を入力してください。
- 鉄骨の材料強度(Fy)を入力して下さい。
- [追加]で入力をセットし、次の部材種類へ移動します。
- [コピー]で前の部材種類の情報をコピーできます。
- 部材種類の最後の"Wdef"を選択して入力した数値を初期値として全ての部材に適用することができます。
- 「データ出力」で、部材データをテキストファイルに出力できます(ファイル名 は"Data_wall_src.txt")。
- 「データ入力」で、テキストファイルを選択して、データを一括入力できます。

6.10 柱(復元カデータの直接入力)

柱情報(ボタン回)

- 断面積 A, 断面二次モーメント Iy, Ix, ヤング率 E, ポアソン比 v を入力してください。
- モーメント・回転角関係 (M-R) 関係を、「属性」をクリックして入力してください。 ここで初期剛性は K0=6EI/L です。
- せん断力・せん断変形関係(Q-D)関係を、「属性」をクリックして入力してください。
 ここで初期剛性は K0=GA/L です。
 (G: せん断弾性係数=0.5E/(1+v), L:部材長)
- [追加]で入力をセットし、次の部材種類へ移動します。
- [コピー]で前の部材種類の情報をコピーできます。
- 部材種類の最後の"Cdef"を選択して入力した数値を初期値として全ての部材に適用することができます。
- 「データ出力」で、部材データをテキストファイルに出力できます(ファイル名 は"Data_column_direct.txt")。
- 「データ入力」で、テキストファイルを選択して、データを一括入力できます。

③ M-R 関係の「属性」で x, y 方向のそれぞれの曲げの復元力特性を入力してください。

- Y軸まわりのモーメント (*M*_v)・回転角関係の復元力の折れ点の値を入力してください。
- X軸まわりのモーメント (*M*_x)・回転角関係の復元力の折れ点の値を入力してください。
- [オプション]で復元力特性のパラメータを入力できます。初期値は以下のようになっています。

オプションエディタ	×
RCオブション	
R1 : 剛性低下率 [0, 1]	0.5
R2:フリップ剛性率 [0, 1]	0
R3 : 耐力低下率 [0, 1]	0
	ОК

④ Q-R 関係の「属性」で x, y 方向のそれぞれのせん断の復元力特性を入力してください。

	せん断力エディタ	×
	ť	心断力
	Q-R関係(X方向) せん断力 (kN) Qc 이 Qy 0 Qu 0	剛性 (kN/mm) K0 0 K1/K0 0.4 K2/K0 0.001
	Q-R 関係(Y方向) せん断力 (kN) Qc 0	剛性 (kN/mm) K0 0
- Q-R 関係	Qy 0 Qu 0	K1/K0 0.4 K2/K0 0.001
Qu Qy Qc K1 Rc Rc Rc Ry Ru R 属性	-	オプション OK

- X軸方向のせん断力(Q_x)・せん断変形関係の復元力の折れ点の値を入力してください。
- Y軸方向のせん断力 (Q_y)・せん断変形関係の復元力の折れ点の値を入力してください。
- [オプション]で復元力特性のパラメータを入力できます。初期値は以下のようになっています。

オプションエディタ	×
RCオプション	
R1 : 剛性低下率 [0, 1]	0.5
R2:スリップ剛性率 [0, 1]	0
R3 : 耐力低下率 [0, 1]	0
	ОК

6.11 梁(復元カデータの直接入力)

梁情報(ボタン回)

- 曲げバネ、せん断ばねと軸ばね(軸剛
 性)から構成されます。
- 軸剛性を入力してください。
- せん断バネと曲げバネの履歴特性をメニ ューから選択します。
- [属性] で復元力特性のパラメータを入 力します。
- [追加]で入力をセットし、次の部材種類 へ移動します。
- · [コピー]で前の部材種類の情報をコピー できます。
- 部材種類の最後の"Bdef"を選択して入 カした数値を初期値として全ての部材に 適用することができます。
- 「データ出力」で、部材データをテキストファイルに出力できます(ファイル名は"Data_beam_direct.txt")。
 - 「データ入力」で、テキストファイルを 選択して、データを一括入力できます。

[1] 曲げばね M-R

Linear

D-Trilinear

	属性エディタ	×
	剛性低下下肌	ニア履歴モデル
	「初期剛性 (kNm) K0 0	
	岡性比	而力 (kNm)
	К1/К0 0	Mc 0
	K2/K0 0	Му 0
	КЗ/КО 0	Mu 0
	履歷形状係数	
曲げばね M-R	戻り剛性低下率 [0, 1]	0.5
3. D-Trilinear 💌	スリップ率 [0, 1]	0
Mul My K2 K3	<u> </u>	0
		ок

[2] せん断ばね Q-D

Linear

I

	属性エディタ	X
せん断ばね Q-D		
1. Linear 🔻	弾性ばね	
F Ko D	剛性 (kN/mm) K0 O	

Bi-linear

	属性エディタ	×
	バイリニア	履歴モデル
	*刀期剛性 (kN/mm) K0 0	
tt Altifitta Q-D 2. Bi-linear ▼	阿 州生比 K1 / K0 0	荷力 (KN) Fy 0
		ок

D-Trilinear

初期剛性 (kN/mm) K0 0 剛性比 K1 / K0 0 K2 / K0 0 K3 / K0 0 Fu 0
K0 이 岡州生比 雨ガナ) (KN) K1 / K0 0 K2 / K0 0 K3 / K0 0
剛性比 耐力 (kN) K1 / K0 0 Fc 0 K2 / K0 0 Fy 0 K3 / K0 0 Fu 0
K1/K0 0 Fc 0 K2/K0 0 Fy 0 K3/K0 0 Fu 0
K2 / K0 0 Fy 0 K3 / K0 0 Fu 0
K3/K0 0 Fu 0
履歴形状係数
戻り剛性低下率 [0, 1] 0.5
スリップ率 [0, 1]
強度低下率 [0, 1] 0

Viscoelastic

	属性エディタ	×
	米占民单性生ダ	ンパー
せん単所はお2 Q-D 4. Viscoelastic ▼	岡州生 (kN/mm) K1 0 K2	- いんし - いんし K1=0 はパネなし
F Cŭ	─粘性係数(kN*s/mm) C	ОК

6.12 壁(復元カデータの直接入力)

壁情報(ボタンピー)

- せん断バネと曲げバネおよび軸ばねか ら構成されます。
- せん断バネと曲げバネの履歴特性をメ
 ニューから選択します。
- [属性]で復元力特性のパラメータを入 カします。
- 軸剛性は数値を直接入力します。
- 部材種類の最後の"Ddef"を選択して
 入力した数値を初期値として全ての部
 材に適用することができます。
- 「データ出力」で、部材データをテキ ストファイルに出力できます(ファイ ル名は"Data_wall_direct.txt")。
- 「データ入力」で、テキストファイル
 を選択して、データを一括入力できます。

① 弾性ばね選択時

せん断バネ (Q_s -D_s)

属性エディタ	,	×
	弾性ばね	
一剛性 (ki K0	V/mm)	ок

属性エディタ	7	×
	弾性ばね	
一剛性 (k K0	N/mm)	E+ 0
		ОК

② バイリニア型

曲げ断バネ (Q_b -D_b)

属性Iディタ ×	属性エディタ ×
バイリニア履歴モデル	バイリニア履歴モデル
ネ刀其周剛性 (KN/mm) K0 0	約期間性 (KN/mm) K0 0 E+ 0
岡竹生比 K1 / K0 0 Fy 0	岡川性比 耐力 (kN) K1/K0 0 Qby 0 E+ 0
ОК	ОК

曲げ断バネ($(Q_b - D_b)$
--------	---------------

剛性 (kN	/mm)		
К0	0		
剛性比一			N)
K1/K0	0	Fc	0
(2/K0	0	Fy	0

圖啡性 (kNm/rad)	
КО 0 Е+ 0	
回始出 法五 (内) (2)	
K1/K0 0 Qbc 0	E+ 0
K2/K0 0 Qby 0	E+ 0

4	剛性低下	۲ F	リリ	ニア型
---	------	-----	----	-----

せん断バネ (0゚-D	.)
-------------	----

曲げ断バネ (Q_b-D_b)

属性エディタ ×	属性Iディタ ×
剛性低下トリリニア履歴モデル	剛性低下トリリニア履歴モデル
お月間11生 (KN/mm) K0 0 0	[★] 7規開料性 (kN/mm) K0 0 E+ 0
剛性比 耐力(kN) K1/K0 0 K2/K0 0 K3/K0 0 Fu 0 履歴形状係数 厚り剛性低下率[0, 1] 0.5	剛性比 耐力 (kN) K1 / K0 0 K2 / K0 0 K3 / K0 0 B歴形状係数 夏り剛性低下率 [0, 1] 0.5
スリップ半 [0, 1] 0 強度低下率 [0, 1] 0	スリップ率 [0, 1] 0 強度低下率 [0, 1] 0

6.13 柱(混合構造)

柱情報 (ボタン回)

部材エディタ	
	柱
種類番号	構造種別
C3 =	C S
C5 C6	C SRC
C7 C8	C 直接入力
C9 C10	
C12 C13	
C14 C15	
C16 C17	属性
IC18	

- 部材種類 C1, C2, … ごとに構造種別を選 択できます。
- [属性]でそれぞれの構造種別の特性を入力 します。
- [追加]で入力をセットし、次の部材種類へ 移動します。
- [コピー]で前の部材種類の情報をコピーで きます。
- 部材種類の最後の"Cdef"を選択して入力 した数値を初期値として全ての部材に適用 することができます。

6.14 梁(混合構造)

梁情報(ボタン町)

部材エディタ	×
	梁
種類番号	構造種別
B1	• RC
B2 B3 ≡ B4	C S
B5	C SRC
B6 B7 B8 B9	C 直接入力
B10 B11 B12	
B13 B14 B15	
B16 B17 B18	属性
	追加 OK

- 部材種類 B1, B2, … ごとに構造種別を選 択できます。
- [属性]でそれぞれの構造種別の特性を入力 します。
- [追加]で入力をセットし、次の部材種類へ 移動します。
- [コピー]で前の部材種類の情報をコピーで きます。
- 部材種類の最後の"Bdef"を選択して入力 した数値を初期値として全ての部材に適用 することができます。

6.15 壁(混合構造)

辟情報	(ボタン	
笙惰報	(ホタン	L)

部材エディタ	×
	 壁
種類番号	「神ノ旦「里方」
W1 ^	RC
W2 W3	C S(71,−7)
W4	
W5	○ SRC (ブレース)
W7	〇 直接入力
W8	
W10	
W11	
W13	
W14	
W15 W16	
W17	属性
Ľ~	OK

- 部材種類 W1, W2, … ごとに構造種別を選 択できます。
- [属性]でそれぞれの構造種別の特性を入力 します。
- [追加]で入力をセットし、次の部材種類へ 移動します。
- [コピー]で前の部材種類の情報をコピーで きます。
- 部材種類の最後の"Wdef"を選択して入力 した数値を初期値として全ての部材に適用 することができます。

- 6.16 床スラブ(面内剛)
- 床は面内変形に対して剛(剛床仮定)とし、節点の面内自由度は重心位置の面内自由度に 従属となります。

(c) 面内剛 (剛床仮定) のときの独立自由度の例

- 6.17 床スラブ(完全剛)
- 床は面内・面外変形に対して剛とし、節点の全ての自由度は重心位置の自由度に従属となります。

(d) 完全剛のときの独立自由度の例

6.18 床スラブ (弾性床)

床スラブ情報 (ボタン 🏫)

	床スラブ
種類番号	○弾性 ● 剛
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10	厚さ (mm) t 150 「コンクリート強度 (N/mm2)・ Fc 24
「拘束自由」	度番号
(例) 345678	0 X-Y 方向のみ

- 「弾性」の場合、面内の弾性変形が考慮されます。
 床の厚さとコンクリート強度を入力します。
- 「剛」の場合は、その床は完全剛となります。床の
 重心位置の拘束自由度を指定できます。
- 部材種類の最後の"Fdef"を選択すると、入力した 数値を初期値として全ての部材に適用することがで きます。

T PLAN									3	
◧ण∞ቀ	- = ኞ	8 🛛	r 🖽	● ↔						
Unit: mm		6000		6000		6000				
	C1	B3	C1	W1	C1	B3	C1		=	/
10000	В4	F1	В4	Ft	В4	F1	В4		1	
	C1	B2	C1	B2	C1	B2	C1			
10000	В4	F1	В4	*	Β4	F1	В4			
	C1	B2	C1	B2	C1	B2	C1			
10000	Β4	F1	В4	F1	Β4	F1	В4			
	C1	B3	C1	W1	C1	B3	C1			
<		1						۴		
▲ 	▼ ▽	層重量	(kN) 7	7200.	階高(1	mm) 40	00.	1F		

床の位置には部材種類番号 (F1~F100)がセットで きます。

マウスでクリックする と、床なし(吹き抜け) にすることができます。 6.19 床スラブ(混合)

床スラブ情報 (ボタン 🏫)

部材エディタ	EX
	床スラブ
階番号 1F 2F 3F Ⅱ 4F 5F	スラブ種別 〇 面内剛 〇 完全剛 ④ 弾性床
6F 7F 8F 9F 10F 11F 12F 13F 14F 15F 16F 17F ▼	属性
כצ-	道加 OK

階ごとにスラブ種別を選択できます。

-

-

- "弾性床"の場合、[属性]で特性を入力できます。
- [追加]で入力をセットし、次の階へ移動します。
- [コピー]で前の階の情報をコピーできます。

STERA 3D 使用法

6.20 接合部

接合部パネル情報(ボタン 🔶)

剛域

せん断弾性パネル

接合部内の剛域やせん断弾性パネルの長さの比率を設定できます。 初期値では 1.0(部材の面まででの長さ)です。 6.21 外部ばね

外部ばね情報(ボタン 注) 注)基礎階(BF)またはオプションで「外部水平ばね」 (考慮する)を選択時のみ有効、初期設定はピン支持

- 「ピン」か「ばね」を選択できます。 (初期値はピン支持)
- 外部ばねは、0.弾性ばね(Elastic)、1.
 浮き上がりばね(Lift up)、2.剛性低下型トリリニア(D-Trilinear)、3.空気ばね(Air Spring)、4.ベースプレート(Base plate)、5.振り子ばね(Pendulum)から選択できます。
- 部材種類の最後の"Sdef"を選択して入 カした数値を初期値として全ての部材に

[3]「空気ばね」	〕 ≪ ^{K1} 屮 ^{C1} 選択時
属性エディタ	×
エアダン	/パー
圈性1 (kN/mm) K0 0	剛性2 (kN/mm) K1
	─ 粘性係数 (kN*s/mm) C1 0
damping force = C1 V ^B	- 非線形係数 B 0
	ОК

[属性]で空気ばねの特性値を設定で きます。

このとき、空気ばねの力は $F = K_1(z-y) + K_0 z$ $K_1(z-y) = C_1 \cdot \dot{y}^B$ となります。詳しくは「技術マニュア ル(Technical Manual)」を参照してく ださい。

6.22 免震部材

免震部材情報(ボタン³⁸) 注)オプションで「免震部材」(考慮する)を選択時のみ有効

部材エディタ	×	部材エディタ	×
	免震部材	免震部材	_
種類番号	免震部材のタイプ	2 免疫部材のタイプ	7
11 12 13 14 15 10 111 112 113 114 15 116	1. NRB (Natural Rubber Bearing) 履歴特性 ○ 線形 ○ バイリニア ○ ハードニング ○ 修正パイリニア ○ FPB ○ Bouc-Wen	1 12 13 14 15 16 17 18 19 110 111 112 123 134 14 15 16 17 17 18 19 110 111 112 113 114 115 16 17 18 19 110 111 112 113 114 115 116 117 118 119 110 111 112 113 114 115 116 117 118 119 110 111 112	
	多方向せん断ばねの数 2	● 多方向せん断ばねの数 2 💌	
		谷直剛性/水平剛性	
データ入力	データ出力 追加 OK	データ入力 データ出力 追加 OK	

免震部材のタイプを

- 1. NRB (Natural Rubber Bearing, 天然ゴム系積層ゴム支承)
- 2. LRB (Lead Rubber Bearing, 鉛入り積層ゴム支承)
- 3. HDRB (High Damping Rubber Bearing, 高減衰積層ゴム支承)
- 4. Lead Damper (鉛ダンパー)
- 5. Elastic Slide Bearing (弾性すべり支承)
- 6. FPB (Friction Pendulum Bearing, 摩擦振り子支承)
- Original Isolator (履歴特性を 線形・バイリニア・Bouc-Wen から選択できます)
 復元力特性の詳細は「技術マニュアル(Technical Manual)」を参照してください。

また、鉛直剛性と水平剛性との比率(初期値は1000)を入力します。

- マルチスプリングの数を 2, 4, 6, 8, 10 から指定できます。(初期値は 2)
- 部材種類の最後の" Idef"を選択して入力した数値を初期値として全ての部材に適用すること ができます。
- 「データ出力」で、部材データをテキストファイルに出力できます(ファイル名 は"Data_isolator.txt")。
- 「データ入力」で、テキストファイルを選択して、データを一括入力できます。

多方向せん断ばねの数が6の場合

- [1] NRB (天然ゴム系積層ゴム支承) 選択時
- NRBでは、履歴特性は"線形"と"ハードニ ング"を選択できます。
- [属性]をクリックして、復元力特性のパラ メータを入力します。

属性エディ	7	×
	弾性ばね	
一剛性()	:N/mm)	
KO	0	ОК

(ハードニング選択時)

属性エディタ				×
	ハードニン	ヴモデル		_
─初期周小性(K K0	:N/mm) 0			
剛性比 K1/K0 [(D	-ハードニン Fy	ヴ荷重(KN)― 0	
			ОК]

[2] LRB(鉛入り積層ゴム支承)選択時

LRB では、履歴特性は"バイリニア"と"修正 バイリニア"を選択できます。 [属性]をクリックして、復元力特性のパラメー タを入力します。

(バイリニア選択時)

-

-

バイリニ	ア履歴モデル
 初期間性 (KN/mm) K0 0 間1 開1生比 K1 / K0 0 	ñtナ) (KN) Fy 0

"修正バイリニア"ではエネルギー吸収による 耐力低下を考慮できます。このとき、鉛プラグ のサイズを入力する必要があります。

(修正バイリニア選択時)

部材エディタ ×	- HDRB では、履歴特性は"修正バイリニア"
免震部材	のみ選択できます。
免震部材のタイプ 種類番号 3: HDRB (High Damping Rubber Bearing) マ	- [属性]をクリックして、復元力特性のパラメータ を入力します。 - エネルギー吸収による耐力低下を考慮できます
12 履歴特性 13 ○線形 14 ○線形 15 ○ハードニング 16 ○のトードニング 17 ○Bouc-Wen	属性Iディタ ×
$ \begin{array}{c} $	修正バイリニア履歴モデル(高減衰積層ゴム用) 積層ゴムの直径 (mm) Dr 0 総ゴム厚さ (mm)
多方向世ん断ばねの数 2 谷直剛性/水平剛性	Hr 0 履歴エネルギー吸収による耐力低下 ・ 考慮しない ・ 考慮する OK

[3] HDRB(高減衰積層ゴム支承)選択時

[4] Lead Damper (鉛ダンパー) 選択時

部材エディタ	×	- 鉛ダンパーでは、履歴特性は"バイリニア"	のa
	免震部材	選択できます。	
種類番号	免震部材のタイプ	- [属性]をクリックして、復元力特性のパラメ	<u>ڊ </u>
	4: Lead Damper 🗨	を入力します。	
12 13 14	履歴特性 ○ 線形 ○ バイリニア	- エネルギー吸収による耐力低下を考慮できま	す。
15 16 17	○ ハードニング ○ 修正パイリニア ○ Bouc-Wen	属性エディタン	
19		バイリニア履歴モデル	
111 112 113 114 115 116 V		☆刀其開創性 (KN/mm) K0 0	
<u> </u>	多方向せん断ばねの数 2 🗸	К1/К0 0 Fy 0	
	一 鉛直剛性/水平剛性 一		
	Kv / K0 1000 属性	履歴エネルキー吸4以によるmf刀1低ト ○ 考慮しない ○ 考慮する	
データ入力	データ出力 追加 OK	ОК	

[5] Elastic Slide Bearing (弾性すべり支承) 選択時

部材エディタ

[6] FPB (Friction Pendulum Bearing) (摩擦振り子支承) 選択時

- [属性]をクリックして、各滑り面の パラメータを入力します。

摩擦耐力を予め設定したい場合は、鉛直荷重 Wを指定してください。

		『を相圧してくた	C ''			
	免震部材	居性Tディタ				×
话相来号	免震部材のタイプ					
	6: FPB (Friction Pendulum Bearing)	FPB (Friction Pendu	lum Bearing)	摩擦振り子支	「承モデル	
11 12 13 14 15 16 17 18 19	履歴特性 ○ 線形 ○ バイリニア ○ ハードニング ○ 修正バイリニア ○ FPB ○ Bouc-Wen	 ● 1段 ● 2段 ● 3段 ● 3段 	Γ. μ1		I Ih1	
110 111 112 113 114 115 116		µ:摩擦係数 R:曲率半径 (mm) h:中心点高さ (mm)	面 1 0 0 0	面 2,3 0 0 0	面 4 0 0 0	
	多方向せん断ばねの数 2 👤	G . PRF & IS (mm)		,	ľ	
	- 鉛直剛性/水平剛性	一鉛直荷重(摩擦耐力の計)	寘用) ———			
	Kv/K0 1000 属性	 ● 自動(質量分布に基) ● 指定値W = 0 	5() kn			
データ入力	データ出力 追加 OK				ОК	

 \times

2段の場合

3段の場合

[7] Original Isolator (独自の支承) 選択時

- 独自の履歴特性を有する支承を定義したいときは、"Original Isolator"を選択しま す。このとき、履歴特性は線形・バイリニア・Bouc-Wen から選択できます。
- [属性]をクリックして、復元力特性のパラメータを入力します。

部材エディタ ×	
免震部材	- (Bouc-Wen モデル選択時)
免疫部材のタイプ	属性エディタ ×
6: Original Isolator	Bouc Wen 履歴モデル
12 13 14 14 15 15 15 15 15 16 17 17 18 18 12 12 14 15 15 15 17 17 17 18 18 19 19 19 19 19 19 19 19 19 19	Stiffness (kN/mm) Force (kN) K0 0 Fy 0 履歴形状のパラメータ F
19 110 111 112 113 114 115 116 V	N 2 Alpha 0.01 Beta 0.5 Gamma 0.5
	- 劣化特性のパラメータ
多方向せん断ばねの数 2 <u>▼</u>	A 1
	D_A 0 D_Myu 0 D_Eta 0
Kv/K0 1000 属性	
データ入力 データ出力 追加 OK	ОК
Rouo_Wop エデルの字差	Alpha = α Beta = β Gamma = γ
	$A = A_{0}$
(計神は投例マーエアルを参照)	$D A = \delta$ D Myu = δ D Eta= δ
$f = \alpha k_0 x + (1 - \alpha) k_0 z$	$-\underline{-}, e_A, -\underline{-}, g = e_V, -\underline{-}, g = e_{\eta},$
$\dot{z} = \frac{A\dot{x} - \left\{\beta \left \dot{x}\right \left z\right ^{N-1} z + \gamma \left \dot{x}\right ^{N}\right\}\nu}{\eta}$	
$A=A_0-\delta_A e, \nu=1+\delta_\nu e, \eta=1+\delta_\eta e$	

6.23 パッシブ制振部材

パッシブ制振部材情報(ボタン) 注)オプションで「パッシブ制振部材」(考慮する) を選択時のみ有効

- 弾性、履歴、オイル・粘性から選択し ます。
- 履歴ダンパーとオイル・粘性ダンパー は、特性をメニューから選択します。
- ダンパーの特性は[属性]で入力します。
- 制振ダンパーの上に鉄筋コンクリート
 梁がある場合には、[上の梁の種類番
 号]でそのタイプ番号をメニューから選
 択して下さい。初期値は剛(rigid)です。
- 部材種類の最後の"Ddef"を選択して
 入力した数値を初期値として全ての部
 材に適用することができます。
- [属性]で復元力特性のパラメータを入 力します。
 - 「データ出力」で、部材データをテキ ストファイルに出力できます(ファイ ル名は"Data_damper.txt")。

_ ·

.

① 弾性ばね選択時

	「ネのタイプ ――――
● 弾性	
○ 履歴	1. Bilinear 💌
○ オイル・粘性	1. Oil 💌
	F Ko D

, 属性エディタ	X
弾性ばね	
剛性 (KN/mm) K0 0	ОК

-___

② 履歴ダンパー選択時

バイリニア型

ノーマルトリリニア型

剛性低下トリリニア型

属性エディタ	 `
バイリニア履	歴モデル
- 初期剛性 (kN/mm) - K0 0	
剛性比 K1/K0 0	耐力 (KN) Fy 0
	ОК

属性エディタ	7		×
	ノーマルトリリ:	ニア履歴モデ	<i>ι</i> .
_ □ 岡性 (kN	/mm)		
К0	0		
		_荷重 <mark>(k</mark>	N)
K1/K0	0	Fc	0
K2/K0	0	Fy	0
			ОК

剛性低下	トリリニア履歴モ	デル
初期剛性 (kN/mm)—		
К0 0		
剛性比		(kN)
к1/ко 0	Fc	0
K2/K0 0	Fy	0
КЗ/КО 0	Fu	0
履歴形状係数		
戻り剛性低下率 [0, 1]	1	0.5
スリップ率 [0, 1]		0
<u> </u>		0

ポリリニア・スリップ モデル

ポリリュ	ニア・スリップ履歴モデル	
初期岡州生 (kN/mm) K0 0		
剛性比	而力 (kN)	
к1/ко 0	Fc 0	
К2/К0 0	Fy 0	
数值積分法		
● 平均加速度法(〔負剛性を無視〕	
O Operator Split	ting 法(負剛性を考慮)	

Bouc-Wen モデル

図性エディタ X
Bouc Wen 履歴モデル
Stiffness (kN/mm) Force (kN) K0 0 Fy 0
履歴形状のパラメーター
N 2
Alpha 0.01 Beta 0.5 Gamma 0.5
「劣化特性のパラメーター
A 1
D_A 0 D_Myu 0 D_Eta 0
ОК

属性エディタ	×
バイリニア履	夏歴モデル
- 취期開州性 (kN/mm) K0 0	
剛性比 K1/K0 0	「前打」(kN) Fy 0
	ОК

③ オイル・粘性ダンパー選択時

オイルダンパー

属性エディタ	— X —
オイルダン	//(-
「取り付け部剛性 (KN/mm)」 K 0	
*粘性係数 (kN*s/mm) C1 0	- リリーフ速度 (mm/s)
粘性係数比 C2/C1	ок

粘性ダンパー

属性エディタ	J
粘性ダンパー	
取り付け部剛性 (KN/mm) K 0	
ОК	

粘弾性ダンパー 属性エディタ 一せん断バネのタイプー ○ 弾性 - 剛性 (kN/mm)-○ 履歴 4. Poly-Slip • ● オイル・粘性 0 K1 3. Viscoelastic 👻 0 K2 F=K1u1=K2u2+Ců2 ĸ, Ŵ 粘性係数 (kN*s/mm)-'u: 0 С

 \times 粘弾性ダンパー K_2 ₩^ĸ K1=0はバネなし OK

摩擦ダンパー付き粘弾性ダンパー

6.24 組積造壁

組積造壁情報(ボタン=)注)オプションで「組積造壁」(考慮する)を選択時のみ有効

-

-

-

部材エディタ	×
	組積造壁
種類番号 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12	寸法 (mm) Hb (レンガ) 60 tb (レンガ) 100 Hm (モルタル) 10 圧縮強度 (N/mm2)
M13 M14 M15 M16 Y	Fcb (レンガ) 7.5 Fcm (モルタル) 5
שצ~	オプション
データ入力	_ データ出力 追加 OK OK OK

- レンガ単体とモルタルのサイズ、材料圧縮強 度を入力してください。
- 組積造壁の上に鉄筋コンクリート梁がある場合(下図参照)には、[上の梁の種類番号] で、そのタイプ番号をメニューから選択して 下さい。初期値は剛(rigid)です。

- 部材種類の最後の"Mdef"を選択して入力した数値を初期値として全ての部材に適用することができます。
- 「データ出力」で、部材データをテキストファイルに出力できます(ファイル名は"Data_masonry.txt")。
- 「データ入力」で、テキストファイルを選択 して、データを一括入力できます。

オプションエディタ	×
組積造オプション	,
1. 剛性補正係数	1
2.耐力補正係数	1
←組積造の圧縮強度 ● Pauley and Priestley 1992	
C Eurocode 6 : fm = k * Fcb ^a k 0.5 a 0.7	* Fcm ^b
 ● 平均加速度法 ○ Operator Splitting 法(負剛性を 	;考慮〉
	ок

- [オプション] でせん断剛性とせん断耐力の 補正係数(初期値はともに 1.0)を設定でき ます。
- 組積造の圧縮強度を以下から選択できます。
 - Pauley and Priestley 1992
 - > Eurocode 6

-

詳しくは「技術マニュアル (Technical Manual)」を参照してください。

- 組積造のせん断ばねの骨格曲線は降伏後に負
 剛性を含んでいるため、数値積分法として、
 - ▶ 平均加速度法
 - ➢ Operator Splitting 法
 - を選択することができます。

6.25 地盤ばね (コーンモデル)

地盤ばね情報(ボタン 2)注)オプションで「コーンモデル」選択時のみ有効

T117			
	地盤(よ	ね(コーンモデル)	
	地盤特性		基礎
層番号 G1 ▲ G2	H:層厚 (m) ┌G=r Vs2 (どれか2つを入力)─	5	y₂ y → X
G3 G4 G5	G0:せん断剛性(kN/m2) r:単位重量(t/m3)	0	X2 X1
G6 G7 G8	Vs:S波速度 (m/s)	120	X1 (m) 30 X2 (m) 30
G9 G10 G11 G12	(Vp/Vs)2 = 2(1-p)/(1-2p) (どれ Vp : P波速度 (m/s)	か1つを入力) 360	X3 (m) 7
G13 G14 ↓	p:ポアソン比	0	杭
⊐Ľ-	Gr/G0:G0低減率	0.64	
	h:減衰定数	0.095	- 逸散滅衰 〇 考慮せず
		追加	☞ 考慮
データ入力	データ出力	学的基盤の層番号 G6 ▼	ок

- 地盤の各層の層厚や地盤特性を入力します。
- 関係式 $G_0 = rV_S^2$ が成立するため、いずれか 2 つの変数を入力すると残りの変数は自動的に計算されます。
- また、関係式 $\frac{V_p^2}{V_s^2} = \frac{2(1-p)}{(1-2p)}$ が成立するため、 V_s 以外のいずれかの変数を入力すると他の変数は自動的に計算されます。
- 基礎サイズを入力します。
- 工学的基盤の層番号を選択します。
- 杭がある場合は、[杭]ボタンをクリックします。
- 基礎重量を入力する場合は、[基礎重量]ボタンをクリックします。
- 逸散減衰を考慮するかどうか選択します(初期値は、考慮する。)
- [追加]で入力をセットし、次の層へ移動します。
- [コピー]で前の層の情報をコピーできます。
- 層番号の最後の"Gdef"を選択して入力した数値を初期値として全ての層に適用することができます。
- 「データ出力」で、層データをテキストファイルに出力できます(ファイル名 は"Data_ground_cone.txt")。
- 「データ入力」で、テキストファイルを選択して、データを一括入力できます。
- [OK]で終了します。

	杭		
	建サイズ (m) X1 30 駅高 (m) Sx 0 5向の杭本数 Nx 0	x2 sy Ny	30 0 0
杭の平均特性			
直径 (m2)	0		
杭長 (m)	0		
断面積 (m2)	0		
断面2次モーメント (m4)	0		
ヤング率 E (N/mm2)	0	*1000	
			OK

[杭]ボタンをクリックすると、杭の位置と平均的な杭の特性を入力する画面が現れます。

[基礎重量]ボタンをクリックすると、基礎の重量を入力する画面が現れます。

	基礎重量	
	_重量 (kN)	
Y 軸周り X 軸周り	回転債性重量 (kNm2) 0 E+ 0 0 E+ 0	
	ОК	
6.26 地盤ばね(直接)

地盤ばね情報(ボタン 🗳)注)オプションで「直接」選択時のみ有効

属	尾性エディタ	>	×
	地盤はね(直接入力)		
	- スウェイばね		
	Kh: 剛性 (kN/m)	Ch: 減衰係数 (kNs/m)	
	X方向 0 E+ 0	0 E+ 0	
	Y方向 0 E+ 0	0 E+ 0	
	_ องระวัติเสล		
	-Kr: 剛性 (kNm/rad)-	Cr: 減衰定数 (kNms/rad)	
	X方向 0 E+ 0	0 E+ 0	
	Y方向 0 E+ 0	0 E+ 0	
	データ入力 データ出力 [基礎重量の入力のK	

- スウェイばねの特性 K_h , C_h とロッキングばねの特性 K_r , C_r を入力します。
- [基礎重量の入力]で基礎重量と回転慣性重量を入力します。
- 「データ出力」で、層データをテキストファイルに出力できます(ファイル名 は"Data_ground_direct.txt")。
- 「データ入力」で、テキストファイルを選択して、データを一括入力できます。
- [OK]で終了します。

7 解析条件の初期設定

7.1 拘束自由度、剛床仮定、P-Δ効果、質量分布

初期設定では、

- 各節点の自由度は、水平3成分、回転3成分、せん断2成分の8自由度
- 水平変形による付加モーメント(P-Δ効果)なし
- 各節点の質点には、床質量を支配面積に応じて配分

初期設定の条件を変えたいときには、メニューの[オプション]から[建物一般]を選択します。

オプション→ 建物一般

建物オプション	X
自由版 [1] 拘束自由度番号 0 1(Ux), 2(Uy), 3(Uz):水平自由度 4(Rx), 5(Ry), 6(Rz):回転自由度 7(Gx), 8(Gy):せん断変形自由度	g - Example 2467 X-方向のみ 1568 Y-方向のみ 45678 回転自由度なし 78 剛節点(せん断変形なし)
柱変形のP-Delta 効果 [3] ・ 考慮しない つ 考慮する	 節点の質量配分 ○ 全ての節点に均等配分 ◎ 床の支配面積に応じて配分 ○ 節点ごとに指定 データ入力

[1] 拘束自由度

拘束する自由度番号を並べた番号を入力します。

- 例) 2467 … X 方向のみの1方向解析(X 方向の自由度1,3,5,8 を残す)
 1568 … Y 方向のみの1方向解析(Y 方向の自由度2,3,4,7 を残す)
 45678 … 回転をすべて拘束(水平と上下の自由度1,2,3 を残す)
 - 78 … 接合部を剛
- [2] P-デルタ効果

鉛直部材(柱、壁)の剛性マトリクスにP-Δ効果を考慮します。

- [3] 層質量の各節点への分布を指定します。
 - ・全ての節点に均等配分(各質点とも同じ質量)
 - ・床の支配面積に応じて配分
 - ・節点ごとに指定

のいずれかを選択できます。

・ 節点ごとに指定
 [データ入力]ボタンをクリックして、節点の
 重量分布が保存されているファイルを選択し
 ます。

 ・ 重量分布のファイルの作成方法は以下の通りです。
 初期解析(8.1参照)で、節点の重量分布のファイル"./input /weight_distribution.txt"が自動作成されます。このファイルを修正して、節点ごとの重量を指定します。

weight_d	istribution.txt - メモ	帳			
ファイル(F)	編集(E) 書式(O)	表示(V) ヘルプ(H)	節点(柱位置)	の重量(N)	
Weight on	each node (N)				4
	200000	400000	400000	200000	
階数	400000 400000	800000 800000	800000 800000	400000 400000	
1	200000	400000	400000	200000	
	200000	400000	400000	200000	
	400000	800000 800000	800000 800000	400000	
	200000	400000	400000	200000	Ш
Z	200000	400000	400000	200000	Ш
	400000	800000	800000	400000	

7.2 静的解析条件

初期設定では、

-1方向静的漸増載荷解析で、目標変形(または水平力)まで 500 ステップで載荷します。

初期設定の条件を変えたいときには、メニューの[オプション] >[解析条件]>[静的解析]を選択します。

[オプション] > [解析条件] > [静的解析]

静的繰り返し加力では、建物頂部での
 目標変形角(頂部変形を建物高さで割った値)を指定します。

最大セグメント数

繰り返しのセグメントの総数 1つのセグメント内の解析刻み数 初期値は 500 です。1方向漸増載荷 解析の刻みもこの数値になります。 水平力の高さ分布を指定 後述

- 加カプログラムは、各載荷セグメントの目標変形角(D1, D2 … D150)を与えて定義します。
- · [追加]で目標変形角をセットし、次の セグメントへ移動します。

[1] 水平力の高さ分布を指定

"8.3 1方向静的漸増載荷解析"で水平力分布を設定する際に

1. Ai (Ai 分布) 2. Triangular (逆三角形分布) 3. Uniform (等分布)

4. UBC (米国 UBC) 5. ASCE (米国 ASCE) 6. Mode (モード分布形)

7. User defined

のうち、7. User defined によって独自の水平力分布を指定する場合には、[データ入力]ボタンをクリックして、水平力の高さ分布が保存されているファイルを選択します。

STERA_3D > STERA_3D JP V10.2 > input			
load_distribution.txt			
weight_distribution.txt			

水平カ分布のファイルの作成方法は以下の通りです。
 初期解析(8.1 参照)で、層の水平カ分布のファイル"./input/load_distribution.txt"が自動作
 成されます。このファイルを修正して、層ごとの水平カ分布(比率)を指定します。

////////////////////////////////////	- 🗆 ×
ファイル(F) 編集(E) 書式(O) 表示(V) ヘルス Load distribution at each fl F load 0 0.000 階数 1 0.000 2 0.000 3 0.000 4 0.000 5 0.000 6 0.000	^f (H) oor (kN in case of static force) 水平荷重の分布 (比率を入力)
7 10000.000 8 0.000	この例は、7階頂部に集中荷重の場合 目標水平力を加える場合は単位を kN に してください

[2] 変形角履歴

変形角履歴を[データ出力]ボタンで "Drift_history.txt" に出力できます。

また、[データ入力]ボタンで、ファイルから変形角履歴を入力することができます。

このとき、あらかじめ任意の変形角履歴を[データ出力]ボタンで"Drift_history.txt"に出力して、それを修正することで、新しい変形角履歴用のファイルを作成します。

修正したファイルを選択する。

7.3 動的解析条件

初期設定の条件を変えたいときには、メニューの[オプション] >[解析条件]>[動的解析]を選択します。

III STERA_3D - Stera7F.stera	- 🗆 X
ファイル(F) プラン(P) 部材(M) オプション(O) 表示(V) ヘルプ(H)	
🗋 🖙 🖬 🔛 😰 建物一般	
¹¹ PLAN ¹¹ 部材 ¹¹ 第析条件 ¹¹ 静的解析 ¹¹ ■ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	
0000 0000	
C1 B3 C1 W1 C1 B3 C1	

[オプション] > [解析条件] > [動的解析]

時間刻みの再分割数	5	出力の時間刻みの再分割 () Yes (• N
─減衰マトリクス────		地動変位計算用バンドパスフィルター
減衰タイプ 1.[C]=	a[K0] 🔹	fL: ローカット 0.1 (Hz)
粘性減衰定数 h1	0.05	fH: ハイカット 20 (Hz)
h2	0.05	次数 10
- 数值積分法		3
◎ 平均加速度法		10 ¹
C Operator Splitting 法		Butterworth バンドパスフィルタ
-入力		
● 地震動 ○ 起振機加	振 〇 風圧力	

- 時間刻みの再分割数

初期値は5 です。地震応答解析において、地震波データの時間間隔を分割する分割数を与えま す。例えば、地震波データの時間刻みが0.02 秒で、分割数が5 の場合には、地震応答解析に おける数値積分の刻みは、0.004 秒になります。 なお、地震波データ数の上限値は60,000 です。 - 出力の時間刻み再分割

No の場合、応答出力の時間刻みは、地震波データの時間間隔と同じで、再分割しません。 Yes の場合、応答出力の時間刻みも再分割した値となります。再分割数が大きい場合は、出力 ファイルのサイズが大きくなります。

- 減衰マトリクス

次の中から選択します。

- [C] = a[K0]: 初期剛性比例
- [C] = a[Kp]: 瞬間剛性比例
- [C] = a[KO]+b[M]: レーリー型

次に、1次と2次の粘性減衰定数 h1, h2 を指定します。h2 はレーリー型の場合に使用されま す。減衰定数の初期値は0.05 です。

- 数值積分法

数値積分法として、平均加速度法と OS 法(Operator Splitting) のいずれかを選択します。 (初期値は平均加速度法)

- 入力

地震動入力と特定の層に設置した起振機による強制加振のいずれかを選択します。(初期 値は地震動)

- 地動変位計算用バンドパスフィルター

地動加速度波形から FFT を用いた積分で変位波形を計算する際に用いる Butterworth バンドパスフィルターのパラメータを設定します。初期値は、

ローカット周波数 0.1Hz
 ハイカット周波数 20Hz、
 フィルター次数 10

です。詳しくは技術マニュアルを参照してください。

8 建物および解析結果の3D表示

8.1 建物の3D表示

82

[1] "初期寸法 ?"の画面では、スパン1、階高 0.5 の固定比率になっています。

"実寸法」でをクリックすると、入力した実際の寸法の比率で表示します。

[2] "解析 "が有効になったら、クリックして初期解析をします。

以下のメッセージが出たら、OKを押すと、応答設定画面が現れます。

Stera Analysis is completed. OK	_
応答設定画面	
E-K 0 1 2 3 4 5 6	↓ 弾性モード解析
静的水平荷重 方向 分布 目標変形角 X ▼ 1: Ai ▼ 1/50 ▼ 表示 1: Drift - Shear Relation ▼	静的漸増載荷解析
入力地震動 ファイル名 倍率 ファイル(X) 1.0 ファイル(Y) 1.0 ファイル(Z) 1.0 表示 1: Input Earthquake Ground Motion ▼	│
ムービーファイル ファイル	↓ → → → → → → → → → → → → → → → → → → →
応答 ○ モード ○ 静的解析 ○ 地震動 ○ ムービー	解析の切り替え

応答設定画面

8.2 弾性モード解析

[1] "モード"の番号ボタンをクリックすると、振動モード(1次から6次)が表示されます。
 また、画面の右上に固有周期(Period)と有効質量比(Mx, My, Mz)の値が示されます。

- [2] "スタート で振動モードの揺れが表示されます。" "で一時停止します。 " ■ "で停止します。
 [3] * * "で揺れが拡大、" * "で揺れが縮小します。
 [4] スライダー 33 によって、表示速度を遅くできます。
- [5] "データ保存 "で解析結果をファイルに保存します。
- [6] "白黒 ①"で白黒 画面に切り替わります。

8.3 1方向静的漸増載荷解析

[1] "STATIC LOAD"で加力条件を設定します。

"方向" 加力方向を設定します。

X(X方向) -X(X方向の逆) Y(Y方向) -Y(Y方向の逆)

"分布" 水平カ分布を設定します。カは各層の重心位置に作用します。

1. Ai (Ai 分布) 2. Triangular (逆三角形分布) 3. Uniform (等分布)

4. UBC (米国 UBC) 5. ASCE (米国 ASCE) 6. Mode (モード分布形)

7. User defined (静的解析オプションで指定した任意分布)

"目標変形角" どこまで載荷するか(目標とする頂部変形角)を設定します。 Cyclic はオプションで設定した繰り返し加力になります。 Force はオプションで設定した水平力になります。

1. 1/50 2. 1/100 3. 1/200 4. Cyclic 5. Force

[2] 下の画面に表示する応答を選択します。

[3] "スタート▶"で載荷します。" Ⅲ"で一時停止、"■"で停止します。

8.4 弹塑性地震応答解析

(「オプション」>「動的解析」メニューで"地震動"が選択されている場合)

[1] "EARTHQUAKE"で入力地震動(地動加速度データ)を設定します。

ファイル <mark>(X)</mark>	: ファイル選択画面から X 方向の入力地震動を選択します。
ファイル (Y)	: ファイル選択画面から Y 方向の入力地震動を選択します。
ファイル <mark>(Z)</mark>	:ファイル選択画面から Z 方向(上下)の入力地震動を選択します。
"倍率"	:入力倍率を指定します(初期値は 1.0)。

[2] 下の画面に表示する応答を選択します。

- [3] "スタート で地震応答を開始します。" "で一時停止、" "で停止します。 下の画面には、入力地震動の全波形(白)と現在までの入力(赤)が示されます。
- [4] "ムービー保存 🤗 "で、地震応答をムービー・ファイルとして保存します。

8.5 弹塑性起振機加振解析

(「オプション」>「動的解析」メニューで"起振機加振"が選択されている場合)

応答設定画面 ×			
E-K 0 1 2 3 4 5 6			
前的水平荷重 方向 分布 目標変形角 X ▼ 1: Ai ▼ 1/ 50 ▼ 表示 1: Drift - Shear Relation ▼ ▼ 1			
起振機加振 層番号 1F ▼ 加振方向 X ▼			
振幅 (kN) 周期(sec) C サイン波 10.00 1.000 C ランダム波 File			
表示 1: Input Vibrator Force			

層番号	起振機加振 弓	
۰ ب ا	振幅 (kN) 周期(sec) (ン波 10.00	
0 デン 表示	核ム波 File 1: Input Vibrator Force ▼	
	1: Input Vibrator Force	
	2: Top Building Acceleration	
771	4: Orbit of Top Displacement 5: Base Shear - Top Drift 6: Energy Response 7: Member Response	

- 起振機を設置する層番号と水平加振方
 向(XまたはY)。
- 加振力は、カ(kN)で与えることとし、サイン波とランダム波から選択します。
- サイン波の場合は振幅と周期を入力し ます。
- ランダム波の場合には、ファイル選択
 画面から外部ファイルを選択します。
- ファイルのフォーマットは地震動と同
 - Input Vibrator Force 加振力の波形を表示します。
 - Top Building Acceleration 最上階の重心位置の水平方向加速度(X およびY)の時刻歴を描きます。
 - Top Building Acceleration 最上階の重心位置の水平方向変位(X およびY)の時刻歴を描きます
 - 以下、地震応答解析と同様です。

8.6 風圧力解析

(「オプション」>「動的解析」メニューで "風圧力" が選択されている場合)

動的な風圧力は、指定された高さ分布に従い、建物の各層の重心点に作用する動的な水平力 およびトルクとします。

応答設定画面	×
0 1 2 3	4 5 6
静的荷重 方向 分布 X ▼ 1: Ai 表示 1: Drift - Shear Relat	目標変形角 ▼ 1/50 ▼ ion ▼
風圧力	高さ分布 倍率
Wx (kN)	Dist x 1.0
Wy (kN)	Dist y 1.0
Wy (kN) Wz (kNm)	Dist y 1.0 Dist z 1.0

- Wx (kN): X 方向の水平風圧力ファイル を選択してください。
- Wy (kN): Y 方向の水平風圧カファイル を選択してください。
- Wz(kNm): Z 方向の回転(トルク)風圧
 カファイルを選択してください。
- ファイルの書式は 9.1 節の入力地震動
 と同じです。
- Dist x, Dist y and Dist z: X、Y および Z
 方向の風圧力の高さ分布です。
- ファイルの書式は 7.2 節の静的水平力
 の高さ方向分布の指定と同じです。
- **倍率**:入力倍率を指定します(初期値は 1.0)。

8.7 出力部材の指定

部材指定(ボタン→)をクリックすると出力部材が指定できます。

ボタンがオンのうちは部材種類の変更はできません。もう一度クリックするとオフになりま す。

8.8 建物の地震応答アニメーション・ムービーの保存と再生

1) ムービーの保存方法

弾塑性地震応答解析において、建物の規模が大きい場合や解析時間刻みを細かくした場合に は、建物の揺れの表示に時間がかかることがあります。その場合には、アニメーション部分 (建物の揺れと地震波形)をムービー・ファイルとして保存しておき、あとでムービー・フ ァイルを再生することで、高速に表示させることができます。なお、ムービー・ファイルは 容量が大きくなるので注意してください。

[1]入力地震動(地動加速度データ)を設定します。

[2] "ムービー保存 🤗 "をクリックして、保存用のムービー・ファイル名を指定します。

[3] 自動的に録画が始まります。" ■ "で一時停止、" ■ "で停止します。

[1] [2]
■ STERA_3D - Stera7F.stera ファイル(F) プラン(P) 部材(M) オブション(0) 表示(f) ヘルプ(H)
0 1 2 El 名前を付けて保存 Amp Amp 1.00 C1 方向 分 管理 、 新しいフォルダー BEE 、 @ BEE 、 @
10000 B4 X ✓ / 1:A 表示 1: Drift-She ★ お気に入り ドキュメント ライブラリ 通び表示した場 Git
10000 B4 $77/1$ $\overrightarrow{77/1}$ $\overrightarrow{F3/7}$ 10000 B4 $77/1/V(X)$ Kobe($\overrightarrow{77/1/V(X)}$ $\overrightarrow{Kobe(x)}$ $\overrightarrow{77/1/V(X)}$ Kobe(x) $\overrightarrow{F3/7}$ $\overrightarrow{Elcentro40EW}$ $\overrightarrow{77/1/V(X)}$ Kobe(x) $\overrightarrow{F3/7}$ $\overrightarrow{Elcentro40DD}$ $\overrightarrow{77/1/V(X)}$ $\overrightarrow{Kobe(x)}$ $\overrightarrow{F3/7}$ $\overrightarrow{Elcentro40DD}$
C1 ファイル(7) Kobe(ファイル(2) ドキュメント 、Kobe(NS) 10000 B4 ドキュメント 、Kobe(UD)
C1 ファイル名(N): Movie01 クァイルの種類(T): ノアイルの種類(T):
 ● フォルダーの非表示 ● マオルダーの非表示 ● マオル
[3]

2) ムービーの再生方法

[1] 応答設定画面の"ムービーファイル"で ファイル を押して、保存したムービー・ファイル を選択します。

[2] "スタート → "で地震応答が表示されます。" ... " で一時停止、" = "で停止します。

8.9 解析の切り替え

[1]"応答"のラジオボタンをクリックすると、解析の切り替えができます。

モード: 弾性モード解析

- 静的解析: 1方向静的漸增載荷解析
- 動的入力: 弹塑性地震応答解析/起振機加振解析/風圧力解析
- ムービー: ムービー・ファイルの再生

応答設定画面	
E-F 0 1 2 3 4 5 6	
話的荷重 方向 分布 又 1: Ai 又 1: Ai 表示 1: Drift - Shear Relation	
入力地震動 ファイル名 クァイル(X) 1.0 ファイル(Y)	
ファイル(Z) 1.0 表示 1: Input Ground Acceleration ・	— [1
ムービーファイル ファイル	
応答 © モード ○ 静的解析 ○ 動的入力 ○ ムービー	

9 入力地震動ファイル

9.1 入力地震動ファイルの書式

入力地震動ファイルを自分で用意する場合には、以下のような書式にしてください。

順序		説明	備考			
1番目	整数	地動加速度データ				
(NDATA)		のデータ数				
2番目	実数	データの時間刻み	単位は秒			
(DT)						
3番目以降	実数	地動加速度データ	NDATA 個のデータ。単位は(cm/sec ²)			
 注) データは、空白またはコンマ(,)で区切ってください。						

地震加速度データ数 NDATA の上限は 60,000 です。(NDATA < 60,000)

なお、地面の揺れ(地動変位)は地動加速度データからプログラム内で自動的に計算されま す。

例) "./sample/wave/"フォルダにある" Kobe 1995_NS.txt"の中身

1000	ND	ATA							
0.020	0DT	(0.02 秒間	隔)						
0.70	0.70	-0.30	-2.00	-2.90	-1.70	-0.30	-0.90	-0.40	3.30
3.50	-2.00	-6.30	-5.70	-3.60	-4.10	-2.50	0.20	-0.50	-4.50
-9.30	-5.70	2.50	4.70	4.50	9.20	13.70	8.20	6.60	4.00
-6.50	-11.00	0.40	14.90	2.20	-8.00	4.40	15.90	24.40	36.60
38.30	20.10	3.60	-1.80	0.00	14.80	3.40	-40.00	-49.60	-36.00
-21.90	-9.60	-0.90	0.40	-20.60	-31.30	-24.80	-14.00	3.70	11.00
-2.10	-16.70	-16.30	-12.加;	速度データ	(cm/sec ²)	00	-5.80	-13.50	-26.60
-20.60	24.10	65.30	44.70	0.30	-14.00	7.30	30.40	13.40	-12.00
-24.00	-28.40	-14.00	-10.60	-5.40	13.50	18.30	27.90	33.00	31.50
40.00	8.60	-23.40	-38.80	-26.10	26.90	21.00	9.30	15.40	13.70
25.30	7.30	-17.30	-23.60	-20.80	-12.60	-28.50	-28.50	-15.60	-15.00

10 建物ファイルの保存と読み込み

10.1 建物ファイルの保存

建物情報と部材情報をファイルに保存して、あとで読み込むことができます。 保存するファイルには、拡張子.stera が付きます。

10.2 解析結果のテキストファイルへの出力

弾性モード解析、1方向漸増載荷解析、弾塑性地震応答解析のそれぞれの結果をテキストフ ァイルに保存します。

[1] 応答設定画面において、解析条件を設定します。

[2] データ保存(ボタン)を選択します。

[3] フォルダ選択画面が現れるので、データを保存するフォルダを選択します。

[4] "OK"を押すと、メッセージ画面が現れます。

>>>> Start initial analysis
>>>> Start elastic modal analysis
<pre>>>>> Start nonlinear dynamic analysis 1 % finished 2 % finished 3 % finished 4 % finished 5 % finished 6 % finished 7 % finished 8 % finished</pre>
90 % finished 91 % finished 92 % finished 93 % finished 94 % finished 95 % finished 96 % finished 98 % finished 99 % finished 100 % finished

10.3 出力テキストファイル

出力先のフォルダには、以下のファイルが自動的に作成されます。

1) ファイル "data beam.txt"

各階の	部材	の配置	置と部	材番	号			
Member OF	numb	ber fo	or Bea	am	(total	=	178)	
15	0 4 11 0 18 0	1 0 8 0 15 0 22	0 5 0 12 0 19 0	2 9 0 16 0 23	0 6 0 13 0 20 0	3 0 10 17 0 24	0 7 14 0 21 0	
11	0 27 0 24	25 0 31	0 28 0 25	0 0 32	0 29 0 26	26 0 33	0 30 0 27	

各部材の諸元

--- member properties (cm, kN) member = 1 ---(type = 1) b : 60.000 d : 150.000 slab : 15.000 b : Ec : 0.230E+04 area : 11360.820 Iy : 0.284E+08 steel reinforcement 10- at = 11.400) 10- at = 11.400 (up) (down) slab reinforcement 1- at = 0.713 @ 20.000 shear reinforcement 2- at = 5.067 @ 6.000 material strength Fc = 2.50 Sy = 42.90 Sy(shear) = 42.90 moment from bottom rebars Mc = 0.102E+06 Rc = 0.135E-03 Mu = 0.838E+06 My = 0.643E+06 Qm = 0.322E+04 Ry2 = 0.200E-01 Ry = 0.495E-02 moment from top rebars Mc = 0.111E+06 My = 0.661E+06 Rc = 0.147E-03 Ry = 0.509E-02 Mu = 0.855E+06 Qm = 0.329E+04 Ry2 = 0.200E-01parameters of damage index for flexural failure Um = 15.0 beta = 0.200E+00 shear $Q_{c} = 0.112E+04$ $Q_{y} = 0.335E+04$ Qu = 0.867E+04 Dc = 0.656E-01 Dy = 0.208E+01 Du = 0.520E+01

b: 梁幅 d: 梁せい slab: スラブ厚 Ec: コンクリートのヤング係数 area: 断面積 Iy: 断面 2 次モーメント steel reinforcement: 主筋 slab reinforcement: スラブ配筋 shear reinforcement: せん断補強筋 material strength: 材料強度 Fc: コンクリート強度 Sy: 鉄筋強度 Sy(shear): せん断補強筋強度 bending-spring No. 1: 材端曲げバネ 1 moment from bottom rebars: 下端引張の場合のモーメント・変形角 Mc:ひび割れモーメント My: 降伏モーメント Mu:終局モーメント Qm:Myによるせん断力 Rc:ひび割れ回転角 Ry:塑性ばね降伏回転角 Ry2:材端降伏回転角 shear:せん断ばね Qc:ひび割れ回転角 Ry:降伏世ん断力 Qu:終局せん断力 Rc:ひび割れ回転角 Ry:降伏回転角 Ru:終局回転角 K3:最終剛性

2) ファイル "data_column.txt"

各階の部材の配置と部材番号

各階の	部材(り配直	こと部	材番り	5					Unit: m	m							
Member NF	numb	er fo	or Col	umn (total	=	112)					6000		6000		6000		
01	0 0	0 0	0 0	0 0	0 0	0 0	0 0				C1	B3	C1	W1	C1	B3	C1	
	Ŭ 0	Ŭ 0	Ŭ 0	Ŭ 0	Ŭ 0	Ŭ 0	Ŭ 0			10000) B4		В4		В4		В4	
	0 0	0 0	0 0	0 0	0 0	0 0	0 0				C1	B2	C1	B2	C1	B2	C1	
1F	0	0	0	0	0	0	0	~		10000) В4		В4		В4		В4	
	1 0	0 0	2 0	0 0	3 0	0 0	4				C1	B2	C1	B2	C1	B2	C1	
	5 0	0	6 0	0	0	0	8 0	ł		10000	D 84		В4		Β4		В4	
	9 0 12	Û	10 0 14	0	11 0 15	Ü	12				C1	B3	C1	W1	C1	B3	C1	
<i>k</i> 7 → 1 → 1	10 m=#	_ 0	14	U	10	U	10)								_		
各部材 m	の諸: ember	元 prop	ertie	es (cn	ı, kN)	me	mber	=	1	(ty	pe =	1)		۱ ا	्रे			
b Ec	: : 0	80. 230E	000 +04	d	:	80.0	00							~	\sim		→ x	
are Iy Iy	a: :0	7318. -421E 421E	336 +07 +07										L	3	4			
steel (co	rein rner)	force	ment 4-	at =	9.56	6								ļ		Con Stee	crete sp l spring	oring
(X- (Y-	side) side)		4- 4-	at = at =	9.56 9.56	6 6							軸	」 」ばね(I	multi	-spr	ing)	
shear (X-	rein side)	force	ment 2-	at =	5.06	70	6.1	000										
mater Fc	side) ial s =	treng 2 50	th:	at -	0.00 : 42	.⁄	0.1	000 22	lehaar) =	42	qn						
bendi ax	ng-sp ial f	ring: orce	lelm =	nc = 0.140	1 1) 1)E+04				(onour	,	12							
momen _Mc	t _y =	0.48	1E+05	į My	·_y =	0.1	56E+I	06	Qm_y	=	0.112	E+04						
Kpc Mc Ppo	_y = _x =	0.13	9E-03 1E+05 0E-03	ί Κργ ί Μιγ	'_y = '_x =	0.3	56E+1 60E+1	U2 06 02	Ry_y Qm_x	=	0.421 0.112 0.421	E-02 E+04 E-02						
multi	_× - -spri = -0	ng No .247E	. 1 +02	, np) v =	-0.24	7E+0	2	52	11 y _x	-	0.421	L UZ						
(co Fc	ncret = -0	e) .107E	+04	Fy =	-0.3	20E+	04	Dc	= -0.	863E	-02	Dy =	-0.	127E+0	00			
(st Fc	eel) = 0	.410E	+03	Fy =	: 0.1	23E+	04	Dc	= 0.	191E	-01	Dy =	Ο.	127E+(00			
multi	-enri	ng No	5		<													
x (co	= 0 ncret	.000E e)	+00	у =	0.00	0E+0	0											
Fc (st	= -0 eel)	.347E	+03	Fy =	-0.1	04E+	04	Dc	= -0.	112E	-01	Dy =	-0.	127E+(00			
Fc param	eters	.000E _of_d	+00 amage	Fy = inde	: 0.0 exfor	fle	00 xura	Dc I fa	= O. ailure	000E	+00	Dy =	0.1	000E+0	00			
um shear Oc	- I v =	0.U 0.56	3E+03)eta - }	· U.2	006+	00 88F+1	٦A	Qu v	=	N 199	F+02						
D c Q c	_x = _y =	0.30	0E-01 3E+03	Ď,	/_x = /_y =	0.1 0.1	12E+I 88E+I	01 04	Du_x Qu_y	= =	0.280	E+01 E+03						
Dc	_y =	0.30	0E-01	Ds	'_y =	0.1	12E+I	D1	Du_y	=	0.280	E+01			_			
multi x	-sprin = -0. 笙 1 #	ng No. 247E+	ן -02 ת די	y = – F√· ∰+	0. 247E	+02 \$	 1 近 4	ばれ	の座樽	景(剖	材中心		ڊ)					
10.	לוי האכ	110尺(יy ∙ 1	, 1 00	小矛	1/101		い友心	Uy.	· 叶叶 1八 3	2112						

3) ファイル "data_wall.txt"

各階の部材の配置と部材番号

Member	number for		₩all		(total	14)	
UF	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	$ \begin{array}{c} 0 \\ $	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
IF	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	1 0 0 0 0 2	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0

各部材の諸元

--- inelastic properties (cm, kN) member = 1 ---(type = 1) thick: 0.300E+02 Ec : 0.230E+04 ac1 : 0.732E+04 ac2 : 0.732E+04 aw : 0.314E+05 ash : 0.237E+05 ic1 : 0.421E+07 ic2 : 0.421E+07 iw : 0.168E+10 bending-spring: lelmw = 1 axial force = 0.560E+04 moment Mc_y = 0.217E+07 $My_y = 0.652E+07$ $R_{PC}y = 0.158E-04$ $R_{Py}y = 0.102E-02$ Ry_y = 0.118E-02 multi-spring No. 1 x = -0.326E+03 y = -0.256E+02(concrete) Fc = -0.107E+04Fy = -0.320E+04 Dc = -0.863E-02 Dy = -0.139E+00 (steel) Fc = 0.410E+03 Fy = 0.123E+04Dc = 0.191E-01 Dy = 0.139E+00ζ multi-spring No.15 x = 0.173E+03 y = 0.000E+00(concrete) Fc = -0.221E+04Fy = -0.663E+04Dc = -0.863E-02 Dy = -0.139E+00 (steel) Fc = 0.419E+03 Fy = 0.126E+04 Dc = 0.191E-01 Dy = 0.139E+00 parameters of damage index for flexural failure Um = 15.0 beta = 0.500E-01 shear-spring Qc = 0.186E+04 Dc = 0.224E-01 Qy = 0.558E+04 Dy = 0.112E+01 Qu = 0.572E+04 Du = 0.280E+01 parameters of damage index for shear failure Um = 8.0 beta = 0.100E+00

thick:壁厚

ac1:壁柱1の断面積 ac2:壁柱2の断面積 aw:軸方向断面積 ash:せん断変形用断面積 ic1:壁柱1の断面2次モーメント ic1:壁柱2の断面2次モーメント iw:壁柱の断面2次モーメント

軸ばね(multi-spring)

4) ファイル "data_ground.txt

**** GROUND SPRING ****

<Foundation> <Pile> Sway F_RKhx F_IKhx F_RKhy F_IKhy P_RKhx P_IKhx P_RKhy P_IKhy $(k\overline{N}/cm)$ $(k\overline{N}/cm)$ $(k\overline{N}/cm)$ $(k\overline{N}/cm)$ $(k\overline{N}/cm)$ $(k\overline{N}/cm)$ $(k\overline{N}/cm)$ $(k\overline{N}/cm)$ 0. 1343E+05 0. 2551E+04 0. 1343E+05 0. 2551E+04 0. 1439E+05 0. 2735E+04 0. 3916E+05 0. 7438E+04 Rocking F_RKry (kNcm/rad) F_IKry (kNcm/rad) F_RKrx (kNcm/rad) F_IKrx (kNcm/rad) P_RKry (kNcm/rad) P_IKry (kNcm/rad) P_RKrx (kNcm/rad) P_IKrx (kNcm/rad) 0.4514E+11 0. 8577E+10 0. 4514E+11 0. 8577E+10 0. 5902E+11 0. 1121E+11 0. 1377E+12 0.2616E+11 Radiation F_Chx (kNs/cm) F_Chy (kNs/cm) P_Chy (kNs/cm) F_Cry (kNs/cm) F_Crx (kNs/cm) P_Chx (kNs/cm) P_Cry (kNs/cm) P_Crx (kNs/cm) 0. 1512E+04 0. 1512E+04 0. 2153E+10 0. 2153E+10 0. 1586E+04 0. 1134E+04 0. 0000E+00 0. 0000E+00 Iy (kNcms2) mass Ĭх (kNs2/cm) (kNcms2) 0.0000E+00 0.0000E+00 0.0000E+00 Ty 0. 838 Tswx Trkx Tswy Trky Tx 0.196 1 0.575 0.270 0.197 0.261 h 0.030 hx (2) 0. 202 hx (3) hrky r_hswx 0.095 0.609 hswx r hrky 0. 113 0.109 0.095 r_hrkx 0.044 hy (2) hy (3) hswy hrkx r_hswy 0.066 0.040 0.095 0.095 0.189

F(基礎), P(杭), R(実部), I(虚部), K(剛性), C(減衰), h(スウェイ), r(ロッキング), x(x 方向), y(y 方向) たとえば

F_RKhx: 基礎のX方向スウェイ剛性ばねの実部

P_IKry: 杭のY軸周りロッキング剛性ばねの虚部

F_Chx: 基礎の X 方向スウェイ減衰ばね

Tx:X方向上部建物固有周期、Tswx:X方向スウェイばね周期、Trky:Y軸周りロッキング周期 Ty:Y方向上部建物固有周期、Tswy:X方向スウェイばね周期、Trkx:X軸周りロッキング周期 h:上部建物の減衰定数

 $hx(2) = h + (Tswx/Tx)^{2} (hswx + r_hswx) + (Trky/Tx)^{2} (hrky + r_hrky)$

 $hx(3) = h + (Tswx/Tx)^{3} (hswx + r_hswx) + (Trky/Tx)^{3} (hrky + r_hrky)$

hswx : X 方向スウェイ減衰定数、	hswy : Y 方向スウェイ減衰定数
hrky:Y軸周りロッキング減衰定数、	hrkx : X 軸周りロッキング減衰定数
r_hswx : 逸散減衰 X 方向スウェイ減衰定数、	r_hswy : 逸散減衰 Y 方向スウェイ減衰定数
r_hrky:逸散減衰Y軸周りロッキング減衰定数、	r_hrkx : 逸散減衰 X 軸周りロッキング減衰定数

.....

5) ファイル "max_beam.csv"

単位(kN, cm)

部材番号	変形	カ	塑性率	累積塑性率	損傷指標
EL.NO.= 33 ME 1 MP 1 ME 2 MP 2 Q 1	disp -0.2621E-02 0.2403E-02 -0.3307E-02 -0.3050E-02 -0.5575E-01	force -0.1034E+06 -0.1034E+06 0.1065E+06 0.1065E+06 -0.3563E+03	Um -0.62 0.76 -0.79 -0.96 -0.03	Uh 0.093 0.000 0.089 0.000	D.I 0.043 0.054

- ME: 剛域を除く材端 (A端) MP: 非線形曲げばね(A端) ME: 剛域を除く材端 (B端) MP: 非線形曲げばね (B 端)
- Q: 非線形せん断ばね

Um: 塑性率 (= Dm / Dy) (Dm: 最大変形 p., Dy: 塑性変形.) Uh: 累積塑性率 (=Eh / QyDy) (Eh: 履歴吸収エネルギー, Qy: 降伏耐力) D.I.: 損傷指標 (RC: Park and Ang, S: 疲労)

+

τ

Nonlinear bending spring 非線形曲げばね MP

塑性率は、最大変形の降伏変形に対する比率です。

$$\mu = rac{ heta_{\max}}{ heta_y}$$
材端の場合 $\mu = rac{\phi_{\max}}{\phi_y}$ 非線形曲げばねの場合
6) ファイル "max_column.csv"

単位(kN, cm)

部材番号		変形	力	塑性率							
EL. NO. =	1	disp fo	rce	Umy			disp fo	rce	Umx	Uh	D. I
MY	1	0. 2585E-02 -0. 1348E	+06	0.00	MX	1	0. 2098E-05 -0. 2680E	⊦04	0.00	0. 040	0. 001
CO	1	0.9620E-01 -0.1766E	+04	-0.76 /	ST	1	0.9620E-01 0.9981E	+03	0.76		
CO	2	0. 2662E-01 -0. 6613E	+03	-0.21 /	ST	2	0. 2662E-01 0. 4679E	⊦0 3	0.21		
CO	3	0.9647E-01 -0.1763E	+04	-0.76 /	ST	3	0.9647E-01 0.1000E	⊦04	0.76		
CO	4	0. 2683E-01 -0. 6391E	+03	-0.21 /	ST	4	0. 2683E-01 0. 4695E	⊦03	0.21		
CO	5	0.4591E-01 -0.3200E	+03	-0.36 /	ST	5	0.0000E+00 0.0000E	+00	0.00		
MY	2	0. 5071E-03 0. 2786E	+05	0.00	MX	2	0.1515E-04 0.1793E	⊦04	0.00	0.062	0.001
CO	1	-0. 6212E-02 -0. 7677E	+03	0.05 /	ST	1	-0. 6212E-02 -0. 1337E	+03	-0.05		
CO	2	0. 1827E-01 -0. 9443E	+03	-0.14 /	ST	2	0. 1827E-01 0. 3933E	+03	0.14		
CO	3	-0. 6243E-02 -0. 7715E	+03	0.05 /	ST	3	-0. 6243E-02 -0. 1344E	+03	-0.05		
CO	4	0. 1808E-01 -0. 9475E	+03	-0.14 /	ST	4	0. 1808E-01 0. 3892E	+03	0.14		
CO	5	0.8815E-02 -0.2104E	+03	-0.07 /	ST	5	0.0000E+00 0.0000E	+00	0.00		
QX		-0. 2722E-01 -0. 5106E	+03	-0. 02	QY		-0. 4822E-03 -0. 9044E	+01	-0.00		
Ň		-0. 7363E-01 -0. 4163E	+04								

MY: Y 軸周りの曲げ **MX: X** 軸周りの曲げ CO: コンクリートばね ST: 鉄筋ばね QX:X方向せん断力 QY:Y方向せん断力 N: 軸力

۲

şφ ۲

2

۲ Δ

٠ y

7) ファイル "max_wall.csv"

単位(kN, cm)

部材番号	変形	カ	塑性率						
EL.NO.= 1 MY 1	disp 0 2818E-02 -0 64	force 502E+07	Um 2.38		disp	force	Um	Uh 6 577	D.I 0 181
MT 1 MXA 1 CO 2 CO 3 CO 4 CO 5 CO 6 CO 7 CO 8 CO 9 CO 10 CO 11 CO 112 CO 13 CO 14 CO 5 CO 15	0.2818E-02 -0.03 0.4383E-04 -0.91 0.1792E+00 -0.22 0.1595E+00 -0.22 0.1860E+00 -0.22 0.1663E+00 -0.22 0.2655E+00 -0.12 0.2655E+00 -0.11 0.3004E+00 -0.22 0.28829E+00 -0.11 0.3004E+00 -0.22 0.9080E-01 -0.82 0.9080E-01 -0.83 0.1502E+00 -0.95 0.2041E+00 -0.22 0.2041E+00 -0.22 0.2041E+00 -0.25 0.2041E+00	5022E+07 228E+04 202E+04 202E+04 202E+04 202E+04 202E+04 202E+04 202E+04 2031E+04 2031E+04 2032	2.38 0.01 -1.29 / -1.15 / -1.34 / -1.20 / -1.24 / -1.21 / -2.14 / -1.93 / -2.16 / -2.16 / -2.08 / -0.89 / -0.70 / -1.08 / -1.08 / -1.08 / -1.24 /	MXB 1 ST 2 ST 3 ST 4 ST 5 ST 5 ST 7 ST 8 ST 10 ST 11 ST 12 ST 13 ST 14 ST 15	0.4901E-04 0.1792E+00 0.1595E+00 0.1663E+00 0.2655E+00 0.2973E+00 0.2686E+00 0.3004E+00 0.3004E+00 0.9000E+00 0.9080E-01 0.9653E-01 0.1502E+00 0.2041E+00	-0.2265E+05 0.1241E+04 0.1242E+04 0.1245E+04 0.1245E+04 0.1276E+04 0.1276E+04 0.1278E+04 0.1278E+04 0.1278E+04 0.0000E+00 0.1153E+04 0.9602E+03 0.1260E+04 0.1265E+04	$\begin{array}{c} 0.01\\ 1.29\\ 1.15\\ 1.34\\ 1.20\\ 0.00\\ 1.91\\ 2.14\\ 1.93\\ 2.16\\ 0.00\\ 0.89\\ 0.65\\ 0.70\\ 1.08\\ 1.47\\ \end{array}$	5.004	0.181
MY 2 MXA 2 CO 1 CO 3 CO 4 CO 5 CO 6 CO 7 CO 8 CO 7 CO 8 CO 10 CO 11 CO 12 CO 13 CO 14 CO 14 CO 15 CO 14 CO 15 CO 15 CO 14 CO 15	0.1919E-02 0.5- 0.3166E-03 0.7(0.1171E+00 -0.22 0.1042E+00 -0.11 0.1056E+00 -0.21 0.9271E-01 -0.11 0.1049E+00 -0.62 0.1260E+00 -0.11 0.1260E+00 -0.11 0.127E+00 -0.11 0.1266E+00 -0.5- 0.7293E-01 -0.22 0.5109E-01 -0.42 0.6098E-01 -0.42 0.8762E-01 -0.22 0.8762E-01 -0.2	4598+07 0158+04 0158+04 0408+04 0518+04 0518+04 0518+04 0518+04 0518+04 0518+04 0518+04 052	-1.25 -0.01 -0.84 / -0.75 / -0.76 / -0.76 / -0.91 / -1.02 / -0.92 / -0.92 / -0.91 / -0.37 / -0.37 / -0.25 / -0.44 / 0.57	MXB 2 ST 2 ST 3 ST 4 ST 5 ST 6 ST 6 ST 6 ST 7 ST 10 ST 11 ST 12 ST 13 ST 14 ST 15	0.3540E-03 0.1171E+00 0.1042E+00 0.9271E-01 0.0000E+00 0.1260E+00 0.1417E+00 0.1117E+00 0.1272E+00 0.0000E+00 0.7293E-01 0.5109E-01 0.6098E-01 0.8762E-01	0.8920E+04 0.1082E+04 0.9938E+03 0.1003E+04 0.9149E+03 0.0000E+00 0.1143E+04 0.1043E+04 0.1043E+04 0.1051E+04 0.0000E+00 0.7952E+03 0.6426E+03 0.7117E+03 0.8979E+03	$\begin{array}{c} 0.07\\ 0.84\\ 0.75\\ 0.67\\ 0.67\\ 0.00\\ 0.91\\ 1.02\\ 0.80\\ 0.92\\ 0.33\\ 0.37\\ 0.25\\ 0.44\\ 0.63\end{array}$	0.090	0.103
QYA N I	-0.1663E-02 -0.3 0.1084E+00 -0.83	120E+02 50E+04	-0.00	QYB	-0.4549E-02	-0.8533E+02	-0.00		

8) ファイル "max_node.csv"

20 21 22	1200.00 1800.00 0.00	0.00 0.00 1000.00	400.00 400.00 400.00	0.1021E+02 0.1021E+02 0.1021E+02 0.1021E+02 節点番号 又座標(am	0.6032E-13 0.1398E-12 0.9873E-13	0.6237E+00 0.4719E+00 0.8802E+00	0.3035E-03 0.9053E-04 0.4683E-04	0.1212E-01 0.3001E-01 0.2883E-01	0.1325E-15 0.1325E-15 0.1325E-15 0.1325E-15
node 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19	X 0.00 600.00 1200.00 1800.00 600.00 1200.00 1200.00 1200.00 1200.00 1200.00 1200.00 1200.00 1200.00 1200.00 1200.00 1200.00 0.00	Y 0.00 0.00 1000.00 1000.00 1000.00 2000.00 2000.00 2000.00 3000.00 3000.00 3000.00 1500.00 0.00	Z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	dx 0.0000E+0000E+0000E+0000E+0000E+000E+	dy 0.0000E+0000E+0000E+0000E+0000E+000E+	dz 0.0000E+00	C.0000E+00 0.0000E+00	79 0.0000E+00	72 0.0000E+00
2F Ce Ce	18 19 22 23 26 27 30 31 enter of sravi 35 35 36 39 40 43 44 47 48 enter of sravi	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
0F 1F	1 2 5 6 9 10 13 14 enter of gravi	3 4 7 8 11 12 15 16 ty: 17							
Maximum	n Nodal Respon								

■ 刷 灬 田 勹	noue	网络田勺
■節点座標	Х	X 座標(cm)
	Y	Y 座標(cm)
	Z	Z 座標(cm)
■節点最大移動量	dx	X方向変位(基礎からの相対変位)(cm)
	dy	Y方向変位(基礎からの相対変位)(cm)
	dz	Z方向変位(基礎からの相対変位)(cm)
	rx	X軸周り回転角
	ry	Y軸周り回転角
	rz	Z軸周り回転角

9) ファイル "max_structure.csv"

F76543210	h sdx 0.4000E+03 0.1135E+01 0.4000E+03 0.1235E+01 0.4000E+03 0.1350E+01 0.4000E+03 0.1481E+01 0.4000E+03 0.1501E+01 0.4000E+03 0.1406E+01 0.4000E+03 0.8320E+00 0.0000E+00 0.0000E+00	sdy 0.1315E-13 0.1165E-13 0.1031E-13 0.7567E-14 0.4263E-14 0.4263E-14 0.4263E-14 0.0000E+00	ssxssydrxdrysfxsfy0.9645E+000.5077E-120.2411E-020.1269E-140.5172E+040.7915E-110.1071E+010.3984E-120.2678E-020.9961E-150.8255E+040.1527E-100.1196E+010.3416E-120.2990E-020.8541E-150.1071E+050.2626E-100.1345E+010.2805E-120.3362E-020.7013E-150.1251E+050.2863E-100.1390E+010.1995E-120.3475E-020.4987E-150.1332E+050.2869E-100.1330E+010.1203E-120.3325E-020.3008E-150.1375E+050.3219E-100.8105E+000.5924E-130.2026E-020.1481E-150.1457E+050.3481E-100.0000E+000.0000E+000.0000E+000.1457E+050.3481E-10
	dx 0.8919E+01 0.5553E- 0.7786E+01 0.4239E- 0.6551E+01 0.3085E- 0.5204E+01 0.2091E- 0.3725E+01 0.1354E- 0.2227E+01 0.8319E- 0.8320E+00 0.4263E- 0.0000E+00 0.0000E+	dy c 13 0.0000E+(13 0.0000E+(13 0.0000E+(13 0.0000E+(13 0.0000E+(14 0.0000E+(00 0.0000E+(dz rz vx vv ax ay 00 0.1480E-15 0.7113E+02 0.1146E-12 0.7182E+03 0.1023E-11 00 0.1288E-15 0.6288E+02 0.1039E-12 0.5625E+03 0.8902E-12 00 0.1082E-15 0.5423E+02 0.9297E-13 0.5178E+03 0.7880E-12 00 0.8804E-16 0.4484E+02 0.7903E-13 0.5026E+03 0.6453E-12 00 0.6451E-16 0.3354E+02 0.6133E-13 0.4644E+03 0.5065E-12 00 0.3993E-16 0.2096E+02 0.3985E-13 0.3928E+03 0.3642E-12 00 0.1648E-16 0.8039E+01 0.1569E-13 0.3384E+03 0.1665E-12 00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
	■層番号 ■階高 ■層間変位	F F h (sdx 2 sdy 2 ssx 2 ssy 2 drx 2	習番号(0:は基礎階) (cm) X 方向層間変位(cm) Y 方向層間変位(せん断成分) X 方向層間変位(せん断成分) X 方向層間変形角(層間変位のせん断成分/階高) X 方向層間変形角(層間変位のせん断成分/階高)
	■層せん断力	sfx X	X 方向層せん断力(kN) Y 方向層せん断力(kN)
	■基礎からの変位	dx X dy Y dz Z rz Z	K 方向変位(基礎からの相対変位)(cm) Y 方向変位(基礎からの相対変位)(cm) Z 方向変位(基礎からの相対変位)(cm) Z 軸周り回転角(ねじれ)
	■相対速度	vx X	X 方向速度 (cm/sec)
	■絶対加速度	vy Y ax Y	Y 方问速度 (cm/sec) X 方向絶対加速度(cm/sec ²) X 士白絶対加速度(cm/sec ²)
		ay 1	I 刀 问 祀 凶 加 还 皮 (cm/sec ²)

10) ファイル "response_eigen.csv"

固有周期の値の大きな順に、固有周期、刺激係数、刺激関数を示します。

=== natural perio	od and moc	le ===				
++ 1-mode ++						
natural period					T: 因友用期(sec)	
I (sec)						
0.76562	2				bx, by, bz︰刺激係数	
participation factor					mx, my, mz: 有効質量比	
bx	by	bz			mode: 固有モード	
(0 6.36038	0				8 ¥6
effective mass ratio)				DX {V}, DY {V}, DZ {V}· 米川涝X 译	釵
mx	my	mz				
(0.78661	0				
mode vector						
	mode	bx{v}	by{v}	bz{v}		
X-component						
0F	0	0	0	0		
11	0	0	0	0		
2F	0	0	0	0		
3F	0	0	0	0		
4F	0	0	0	0		
5F	0	0	0	0		
6F	0	0	0	0		
/F	0	0	0	0		
Y-component						
0F	0	0	0	0		
11	0.01921	0	0.12215	0		
2F	0.05744	0	0.36532	0		
3F	0.09667	0	0.61486	0		
4F	0.13247	0	0.84253	0		
5F	0.16294	0	1.03637	0		
6F	0.1888	0	1.20082	0		
7F	0.2082	0	1.32425	0		
Z-rotation						
OF	0	0	0	0		
1F	0	0	0	0		
2F	0	0	0	0		
3F	0	0	0	0		
4F	0	0	0	0		
5F	0	0	0	0		
6F	0	0	0	0		
7F	0	0	0	0		
++ 2-mode ++						

11) ファイル "response_structure.csv"

① 1 方向漸増載荷解析の場合

kstep	Sd(cm)	Sa(gal)	max drift			
0	0.00E+00	0.00E+00	C)		
1	1.20E-02	3.33E+01	0.00004	ļ		
2	2.40E-02	6.67E+01	0.0008	3		
3	3.60E-02	1.00E+02	0.00012			
4	4.80E-02	1.26E+02	0.00016	5		
F	sdx(cm)	sdy(cm)	ssx(cm)	ssy(cm)	sfx(kN)	sfy(kN)
0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.40E+01	-1.54E-17
0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.80E+01	-1.54E-17
0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.02E+02	-1.54E-17
0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.28E+02	-3.84E-17
sbx(cm)	sby(cm)	smx(kN)	smy(kN)	dx(cm)	dy(cm)	rz(rad)
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0.00E+00	0.00E+00	-5.10E+03	-2.31E-15	0.00E+00	0.00E+00	0.00E+00
0.00E+00	0.00E+00	-1.02E+04	-2.31E-15	0.00E+00	0.00E+00	0.00E+00
0.00E+00	0.00E+00	-1.53E+04	-2.31E-15	0.00E+00	0.00E+00	0.00E+00
0.00E+00	0.00E+00	-1.93E+04	-5.75E-15	0.00E+00	0.00E+00	0.00E+00

■耐力曲線	kstep sd	解析ステップ数 等価1自由度系の変形 (cm)
■最大届問恋形角	sa max drift	等価1自由度系の加速度(cm/sec ²)
■顧升信间変形内	F	層番号(0:は基礎階)
■層間変位	sdx sdv	X 方向層間変形(cm) Y 方向層間変形(cm)
■層間変位(せん断成分)	ssx	X 方向層間変位(せん断成分) cm)
■層せん断力	ssy sfx	X 方向層间変位(せん断成方) cm) X 方向層せん断力(kN)
■層間変位(曲げ成分)	sfy sbx	Y 方向層せん断力(kN) X 方向層の平均曲げ変形角
■層の曲げモーメント	sby	Y 方向層の平均曲げ変形角 X 方向層曲げモーメント(kNem)
	smy	Y 方向層曲げモーメント(kNcm)
■基礎からの変位 dx dy	X 万回変(Y 方向変(豆(基礎からの相对変位)(cm) 立(基礎からの相対変位)(cm)
rz	Z軸周り回	回転角(ねじれ)

② 弾塑性地震応答解析の場合

kstep	t	a0x	a0y	a0z	d0x	d0y	d0z
0	0	-1.40E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
5	0.02	-1.08E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
10	0.04	-1.01E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
15	0.06	-8.80E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
20	0.08	-9.50E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
F	sdx(cm)	sdy(cm)	sfx(kN)	sfy(kN)	dx(cm)	dy(cm)	rz(rad)
0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
0	0.00E+00	0.00E+00	2.35E+00	-1.53E-17	0.00E+00	0.00E+00	0.00E+00
0	0.00E+00	0.00E+00	1.10E+01	-1.31E-17	0.00E+00	0.00E+00	0.00E+00
0	0.00E+00	0.00E+00	1.81E+01	-1.39E-17	0.00E+00	0.00E+00	0.00E+00
0	0.00E+00	0.00E+00	1.61E+01	-1.48E-17	0.00E+00	0.00E+00	0.00E+00
vx(cm/s)	vy(cm/s)	ax(gal)	ay(gal)				
0.00E+00	0.00E+00	0.00E+00	0.00E+00				
0.00E+00	0.00E+00	0.00E+00	0.00E+00				
0.00E+00	0.00E+00	0.00E+00	0.00E+00				
0.00E+00	0.00E+00	0.00E+00	0.00E+00				
0.00E+00	0.00E+00	0.00E+00	0.00E+00				

■時間	t	時間(秒)	
■地動加速度	a0x	X 方向地動加速度 (cm/sec^2)	
	a0y	Y 方向地動加速度(cm/sec ²)	
	a0z	Z方向地動加速度(cm/sec ²)	
■地動変位	d0x	X 方向地動変位(cm)	
	d0y	Y 方向地動変位(cm)	
	d0z	Z 方向地動変位(cm)	
■層番号	\mathbf{F}	層番号(0:は基礎階)	
■層間変位	sdx	X 方向層間変位(cm)	
	sdy	Y 方向層間変位(cm)	
■層せん断力	sfx	X方向層せん断力(kN)	
	sfy	Y 方向層せん断力(kN)	
■基礎からの変位	dx	X方向変位(基礎からの相対変位)	(cm)
	dy	Y方向変位(基礎からの相対変位)	(cm)
	\mathbf{rz}	Z 軸周り回転角(ねじれ)	
■基礎からの速度	VX	X方向速度(基礎からの相対速度)	(cm/sec)
	vy	Y方向速度(基礎からの相対速度)	(cm/sec)
■絶対応答加速度	ax	X方向絶対加速度(cm/sec ²)	
	ay	Y万冋滟对加速度(cm/sec ²)	

12) ファイル "response_member01.csv …"

出力指定部材の時刻歴応答

①梁の場合

BE No.	1					
		Rva	Mva	Uva	Rpa Mpa	a Upa
0.000		-0.7362F-21	-0.1249F-13	0.000	-0.3669F-21 -0.1249F-1;	3 0.000
0.020		0 1087F-06	0.2127F+01	0.000	0 6252F-07 0 2127F+0	1 0.000
0 040		0 8696E-06	0 1702F+02	0,000	0 5001E-06 0 1702E+0	2 0 000
0 060		0 4024F-05	0 7874F+02	0 002	0.2314E - 05 = 0.7874E + 0.000	
0.080		0.9845E-05	0 1027E+03	0.004	0.5662E - 05 0.1927E + 02	3 0.003
0.000		0.00402 00	0.15272.00	0.004	0.00022 00 0.10272.00	0.000
		Ryb	Myb	llvb	Rph Mph	llph
		-0 4351F-21	-0.1044F-13	0 000	-0.3067E-21 - 0.1044E-13	
		0 1087E-06	0.2127F+01	0,000	0.6252E - 07 = 0.1044E + 01	0,000
		0.8696E-06	0.1702F+02	0,000	0.5001E-06 = 0.1702E+02	0,000
		0.4024E-05	0.7874E+02	0.000	0.2314E = 05 0.7874E + 02	0.000
		0.40242 00	0.1077E+02	0.002	$0.5662E - 05 0.1074E \cdot 02$	0.001
		0.30432 03	0. 13272-03	0.004	0. 30022 03 0. 13272:03	0.005
		Dsz	Qsz	Usz	Dx Nx	
		-0.1311E-19	-0. 4245E-16	0.000	0.0000E+00 0.0000E+00	
		0.2433E-05	0.7879E-02	0.000	0.0000E+00 0.0000E+00	
		0.1946E-04	0.6303E-01	0.000	0.0000E+00 0.0000E+00	
		0.9005E-04	0.2916E+00	0.000	0.0000E+00 0.0000E+00	
		0. 2203E-03	0.7136E+00	0,000	0.0000E+00 0.0000E+00	

梁の部材	番号	(data_beam	. txt を参照)	
時間刻み				
変形	力	塑性	率 (単位:ト	(N, cm)
■モーメ	ント			
Rya	Mya	Uya	A 端	
Rpa	Mpa	Upa	A 端非線	形曲げばね
Ryb	Myb	Uyb	B 端	
Rpb	Mpb	Upb	B 端非線	形曲げばね
■せん断	カ			
Rsz	Qsz	Usz	非線形も	とん断ばね
■軸力				
Dx	Nx		軸ばね	

②柱の場合

CO	No.	1													
	0.00 0.02 0.04 0.06 0.06	00 20 40 60 80	-0.265 -0.968 -0.774 -0.358 -0.877	Rya 59E-21 52E-07 - 16E-06 - 34E-05 - 72E-05 - 8xa	0.308 -0.382 -0.305 -0.141 -0.346	Mya 32E-15 22E+01 58E+02 15E+03 53E+03 53E+03 Mya	0. 0. 0. 0.	Uya 000 000 000 000 000), 581), 177), 142), 660), 162	Ryl 1E-2 3E-08 5E-0 8E-0 27E-00 8	0 1 0. 3 -0. 7 -0. 7 -0. 6 -0.	18168 17458 13968 64598 15808	Myb -13 +01 +02 +02 +03 Myb	Uyb 0. 000 0. 000 0. 000 0. 000 0. 000
			-0. 579 -0. 451 -0. 401 -0. 140 -0. 214	3E-21 - 8E-06 - 4E-05 - 7E-04 - 4E-04 - Dsx	-0. 219 -0. 178 -0. 158 -0. 555 -0. 846	97E-13 34E+02 35E+03 55E+03 54E+03 Qsx	0. 0. 0. 0. 0.	000 000 000 000 000 Jsx		0.58 0.82 0.73 0.26 0.39	66E-2 75E-0 76E-0 06E-0 75E-0 Dsy	2 -0 8 -0 7 -0 6 -0 6 -0	. 8529 . 8144 . 7234 . 2535 . 3863	E+01 E+02 E+03 E+03 Qsy	0.000 0.000 0.000 0.000 0.000 0.000 Usy
			0. 633 -0. 191 -0. 152 -0. 707 -0. 173	5E-20 0E-05 - 8E-04 - 1E-04 - 0E-03 - Dz	0. 683 0. 206 0. 165 0. 763 0. 186	8E-16 2E-01 0E+00 3E+00 8E+01 Nz	0.0 0.0 -0.0 -0.0	000 000 000 001 001 003	-0. -0. -0. -0. Rz	. 104 . 891 . 791 . 277 . 422	6E-19 4E-05 9E-04 6E-03 9E-03	-0. -0. -0. -0. -0. Tz	1130E 9623E 8548E 2996E 4566E	-15 -01 +00 +01 +01	0.000 0.000 -0.001 -0.004 -0.006
			-0. 772 -0. 772 -0. 771 -0. 769 -0. 769	6E-02 - 5E-02 - 8E-02 - 9E-02 - 4E-02 -	0. 250 0. 250 0. 249 0. 249 0. 249	0E+03 0E+03 7E+03 1E+03 0E+03	-0. -0. -0. 0.	198 197 188 101 151	3E-21 4E-21 3E-21 3E-21 3E-21 7E-21	-0. -0. -0. -0. 0.	17218 17138 16348 87918 13178	-14 -14 -14 -15 -14	-)	0111/-	、
	-0.3(-0.3(-0.3 -0.3 -0.3	010(a 072E-1 090E-1 111E-1 112E-1 091E-1	a) D2 -0. D2 -0. D2 -0. D2 -0. D2 -0.	2994E+I 3012E+I 3033E+I 3033E+I 3012E+I	a) D3 D3 D3 D3 D3 D3	0.032 0.032 0.032 0.032 0.032 0.032	~	-0.3 -0.3 -0.3 -0.3 -0.3	072E- 090E- 111E- 112E- 091E-	.a) •02 - •02 - •02 - •02 - •02 -	-0.52 -0.52 -0.52 -0.52 -0.52 -0.52	51F (15E+ 45E+ 82E+ 83E+ 47E+	a) 02 02 02 02 02 02	-0.03 -0.03 -0.03 -0.03 -0.03	2 2 2 2 2 2
	-0.29 -0.30 -0.30 -0.30 -0.30	C1D(b 87E-0 03E-0 26E-0 28E-0 08E-0) 2 -0.: 2 -0.: 2 -0.: 2 -0.:	C1F(b 2912E+0 2927E+0 2950E+0 2952E+0 2952E+0 2932E+0	r) (13 13 13 13 13	0.031 0.031 0.032 0.032 0.032 0.032	- - - ~	0.29	S1D (87E- 03E- 26E- 28E- 08E-	b) 02 - 02 - 02 - 02 - 02 -	8 0.507 0.509 0.518 0.518 0.514	S1F() 71E+() 38E+() 37E+() 41E+() 06E+()	5))2)2)2)2)2)2	S1U(b -0.03 -0.03 -0.03 -0.03 -0.03) 1 2 2 2
		柱	の部材	番号((data	_columi	n. txt	t を	参照)						
		時 変〕 ■	間刻み 形 エーメ	、 力 、		塑性率	E (単位	ב : KN	I, c	m)				
		Rya Ryl Rxa Rxl		Mya Myb Mxa Mxb		Uya Uyb Uxa Uxb	/ E /	A 端 3 端 A 端 3 端	(柱 (柱 (柱 (柱 (柱	却))))]]	Y 軸原 Y 軸原 X 軸原 X 軸原	哥り= 哥り= 哥り= 哥り=	E—> E—> E—> E—>	 <	
		Rs: Rs:	(((Qsx Qsy		Usx Usy)	(方 (方	向非約 向非約	泉形 泉形	せん せん	新ば 新ば	ねね		
		∎i Dz	軸力	Nz			2	乙方	句軸(ばね					
		R7	トルク	T ₇			-	7 - 15 1	コトノ	しわ					
		■ 2011 2	マルチ (cm) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	・スプリ カ(kl C1F (; C2F (; C3F (; C3F (; C4F (; S1F (; S3F (; S3F (; C1F () C2F () C3F () C3F ()	ング N) a) a) a) a) a) a) a) b) b)	軸ばね 塑性率 C1U(a) C2U(a) C3U(a) C5U(a) S1U(a) S3U(a) S3U(a) C5U(a) C1U(b) C2U(b) C3U(b)		AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ココココ鉄鉄鉄鉄はコココンシンシンが筋筋筋筋シンシン	クククククばばばばなクククリリリリリねねねねねリリリ	12345 12345	ばばばばば ばばばば	1 2 3 4 5 1 2 3		
		C4I C5I S1I S2I S3I S4I S5I) (b)) (b)) (b)) (b)) (b)) (b)) (b)	C4F (C5F (S1F (S2F (S3F (S4F (S5F (o) o) o) o) o) o)	C4U (b) C5U (b) S1U (b) S2U (b) S3U (b) S4U (b) S5U (b)		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ココ鉄鉄鉄鉄鉄	ククばばばばば		ばね	4 5		

③壁の場合

WA No.	1
--------	---

	Rya	Mya	Uya	Ryb	Муb	Uyb
0.004	-0.1187E-07	-0.6907E+02	0.000	-0.9263E-08	-0.1300E+02	0.000
0.024	-0.2196E-06	-0.1732E+04	0.000	-0.1199E-06	0.4134E+03	0.000
0.044	-0.2985E-06	-0.3039E+04	0.000	-0.8521E-07	0.1549E+04	0.000
0.064	0.8330E-07	-0.5840E+03	0.000	0.1862E-06	0.1631E+04	0.000
0.084	0.9203E-06	0.6774E+04	0.000	0.5574E-06	-0.1035E+04	0.000
Rsx	Qsx	Usx	Dz	Nz		
-0.9919E-08	-0.2312E+00	-0.000	-0.2937E-01	-0.5986E+04		
-0.1594E-06	-0.3714E+01	-0.000	-0.2952E-01	-0.6018E+04		
-0.1801E-06	-0.4197E+01	-0.000	-0.2973E-01	-0.6060E+04		
0.1265E-06	0.2948E+01	-0.000	-0.2975E-01	-0.6064E+04		
0.6936E-06	0.1617E+02	0.000	-0.2956E-01	-0.6026E+04		
C11D(a)	C11F(a)	C11U(a)	S11D(a)	S11F(a)	S11U(a)	
-0.2905E-02	-0.5867E+03	0.030	-0.2905E-02	-0.5032E+02	-0.030	
-0.2923E-02	-0.5903E+03	0.030	-0.2923E-02	-0.5063E+02	-0.030	
-0.2946E-02	-0.5950E+03	0.031	-0.2946E-02	-0.5103E+02	-0.031	
-0.2943E-02	-0.5945E+03	0.031	-0.2943E-02	-0.5099E+02	-0.031	
-0.2913E-02	-0.5883E+03	0.031 ~	-0.2913E-02	-0.5046E+02	-0.031	

壁の部材養	≸号(data	wall.txt	を参照)
時間刻み			
変形	ታ	塑性率	(単位:KN、cm)
Ĩ = + - ×	2 h		
Rva	Mva	Ilva	A端(壁脚)Y軸周り(面内)モーメント
Ryb	Myh	llvh	
■せん断す	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ル内のせん	「「「「「「「「「「」」」」、「「」」、「」、「」、「」、「」、「」、「」、「」
Rsx	0sx		X 方向(面内) 非線形せん断ばわ
■軸力	GOX	000	
Dz	Nz		Z方向軸ばね
■マルチス	、 スプリング	軸ばね	
$\overline{C11D}(a)$	C11F(a)	C11U(a)	A 端コンクリートばね11
C12D (a)	C12F (a)	C12U (a)	A 端コンクリートばね12
C13D (a)	C13F (a)	C13U (a)	A 端コンクリートばね13
C14D (a)	C14F (a)	C14U (a)	A 端コンクリートばね14
C15D (a)	C15F (a)	C15U (a)	A 端コンクリートばね15
S11D (a)	S11F (a)	S11U(a)	
S12D (a)	S12F (a)	S12U (a)	A 端鉄筋ばね 1 2
\$13D (a)	\$13F (a)	\$13U (a)	A 端鉄筋ばね 1 3
S14D (a)	S14F (a)	S14U (a)	A 端鉄筋ばね 1 4
S15D (a)	S15F (a)	S15U (a)	A 端鉄筋ばね15
C11D (b)	C11F (b)	C11U(b)	B端コンクリートばね11
C12D (b)	C12F (b)	C12U (b)	B端コンクリートばね12
C13D (b)	C13F (b)	C13U (b)	B端コンクリートばね13
C14D (b)	C14F (b)	C14U (b)	B 端コンクリートばね14
C15D (b)	C15F (b)	C15U (b)	B 端コンクリートばね15
S11D (b)	S11F (b)	\$11U(b)	
S12D (b)	S12F (b)	\$12U(b)	B 端鉄筋ばね12
S13D (b)	S13F (b)	S13U(b)	
S14D (b)	S14F (b)	S14U (b)	
S15D (b)	S15F (b)	S15U (b)	B 端鉄筋ばね15

13) ファイル "response_floor01.csv …"

完全剛床の重心位置の応答値の時刻歴

・地盤ばね(スウェイ・ロッキングばね)を付けた場合(自動的に基礎は完全剛になりま す)

・「オプション」>「部材」>「床スラブ」で、"完全剛"を選択した場合

時間 変位 回転角 速度 加速度

t dx(cm) dy(cm) dz(cm) rx(rad) ry(rad) rz(rad) vx(cm) vy(cm) vz(cm) ax(gal) ay(gal) az(gal)

11 連続解析

	1	-
動的入力でデータ保存	(ボタン	

を選択すると、連続解析のメニューが現れます。

出力データの保存		×
保存するフォルダを選択して パスの指定	ください	
名前		ОК キャンセル
連続解析	0 None 0 None 1 / Initial 2/ Successive 3 / Final	

メニューから連続解析の条件を設定します。

0 None 連続解析はしません(初期値)

1 /----- Initial 連続解析の最初(解析後の建物状態を保存します)

連続解析では、保存するフォルダが同じ場合、解析結果のファイルが上書きされるので、解 析ごとに保存フォルダを変えることをお勧めします。 STERA 3D 使用法

12 多質点系モデルの自動生成

1方向静的漸増載荷解析で、解析結果をテキストファイルに保存します。

🖬 STERA_3D - Stera7Estera – 🗆 🗙
ファイル(F) ブラン(P) 部材(M) オブション(O) 表示(V) ヘルブ(H)
PLAN pääbiteim □
C1 新市 分布 目標実形角 X 1:Ai 1/50 10000 B4 表示 1:Drift - Shear
C1 入力3 パネウネッルダを選択してください … 10000 B4 ファイルベン ファイル(X) C1UsersISAITOIDocumentsISAITO_TUT2017/Program OK 名前 ウェイル(Y) OutFiles
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
広答 「 モード ○ 静吟解析 ○ 動的入力 ○ ▲ 五 ▼ 豆 ○ ムーピー Ready

アイコンをクリックすると、多質点系に置換するかどうかメッセージ画面が現れます。

右画面に、等価な多質点系モデルが現れます。

実際に1方向漸増載荷解析を行うと、各層がトリリニアの復元力にモデル化されていること が分かります。

STERA_3D - Stera7Fstera — — X					
!ァイル(F) ブラン(P) 部材(M) オブション(O) 表示(V) ヘルプ(H)					
^ベ ↓ PLAN □ 面 PM 수 = キ エード	Image: State				
Unit: mm	■ 1 < U < 5 ■ 5 < U Amp 1.00 500 / 500				
計的水平荷重 方向 分布 月標表形角 X 1:Ai					
110000 B2 表示 1: Drift - Shear Relation マ C1 入力地震動					
ファイル名 倍率 10000 64 ファイル(X) 1.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Qi / W				
10000 B4 表示 1: Input Ground Acceleration I	$0.6 \int \frac{1}{\sqrt{1-1}} \frac{1}{2}$				
広答 ○ モード ○ 静的解析 ○ 動的入力 > >	Ri 1/40 1/20				
Ready					

各層は、自動的に「壁モデル(直接入力)」となり、せん断ばねと曲げばねの復元力特性は それぞれトリリニア型の復元力特性となります。なお、要素番号は、

1 階が「W2」、2 階が「W3」、・・・

です。なお、解析自由度は、X方向のみなので、拘束自由度は「2467」になっています。

🚯 STERA_3D - Stera7Estera	- 🗆 X
ファイル(F) プラン(P) 部村(M) オプション(O) 表示(V) ヘルプ(H)	
Unit: mm 壁モデル(多質点曲げせん断モデル併用) 6000 6000	
種類番号 ₩2 ₩2 10000 ₩2 ₩3 ₩3 ₩4 ₩5 ₩5 ₩5 ₩5 ₩5 ₩5 ₩5 ₩5 ₩5 ₩5	
W6 W7 W8 W8 W9 4.D-Quadiner ▼ 4.D-Quadiner ▼ W10 W11	
$\begin{array}{c} W12 \\ W13 \\ W14 \\ W15 \\ W16 \end{array} \qquad $	
· ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	
データ入力 データ出力 追加 OK	~~~
 ✓ ▲ △ ▼ ▽ 層重量(kN) 7200. 階高(mm) 4000. 1F → 泉 次 ⑦ ① ! 	
Ready	

output フォルダの中に、LMM_comparison.txt と LMM_wall_direct.txt が自動生成され ます。

LMM_comparison.txt には、骨組モデルと多質点系モデルのそれぞれについて、1方向漸 増載荷解析から得られた各層のせん断ばねと曲げばねの復元力関係(力・変形関係)が保存 されています。

LMM_wall_direct.txt には、「6.12 壁(復元カデータの直接入力)」の「データ出力」ファ イル(Data_wall_direct.txt)と同じフォーマットでせん断ばねと曲げばねの復元力特性の値が 保存されています。

トリリニア型の復元力特性への置換方法については「技術マニュアル(Technical Manual)」 をご覧ください。

13 コマンドラインでの実行

「10.2 解析結果のテキストファイルへの出力」を実施すると、フォルダには以下のファイルが保存されます。

ここに、

inputdata.txt	建物入力データ
inputwave_x.txt	水平 x 方向地動加速度データ (9.1 入力地震動ファイルの書式)
inputwave_y.txt	水平 y 方向地動加速度データ (9.1 入力地震動ファイルの書式)
inputwave_z.txt	鉛直z方向地動加速度データ(9.1 入力地震動ファイルの書式)
です。また、すでに説明し	たように
weight_distribution.txt	各層の節点の重量分布(7.1 質量分布)
load_distribution.txt	水平力分布のファイル(7.2 静的解析条件)
LMM_comparison.txt	多質点系モデルの復元力比較(11 多質点系モデルの自動生成)
LMM_wall_direct.txt	多質点系モデルの復元力(11 多質点系モデルの自動生成)
です。	

実行ファイル Response.exe を実行すると input フォルダの中の

inputdata.txt inputwave_x.txt

inputwave_y.txt

inputwave_z.txt

を入力とした解析が行われます。すなわち、STERA_3D. exe を用いなくても、これらのファイルを修正して Response. exe をコマンドラインで実行することで解析を行うことができます。

сору

Response

コマンド	プロンプトを起動	I	コマンドプロンプトを起動
C:¥User	s¥SAITO¥Docume	nts>cd STERA_3D	STERA_3Dのフォルダに移動
C:¥User	s¥SAITO¥Docume	nts¥STERA_3D>Response	Response を実行
>>>> S	Start elastic m	odal analysis	
>>>> s	tart nonlinear 1 % finish 2 % finish 3 % finish 4 % finish 5 % finish	dynamic analysis ed ed ed ed ed ed	
	94 % finish 95 % finish 96 % finish 97 % finish 98 % finish 99 % finish 100 % finish	ed ed ed ed ed ed	
C:¥User	s¥SAITO¥Docume	nts¥STERA_3D>	
たとえば	、3 成分の地震動	波形を	
Earth_	_NS.txt		
Earth_	EW.txt		
Earth_	UD.txt		
に入れ替	えて解析するバッ	チファイル(test.bat)を作	ってみる。
test. bat			
			1
@echo	off		
сору	.\Earth_NS.txt	.\input\inputwave_x.txt	Earth_NS 波を x 方向の地震動にコピー
сору	.\Earth_EW.txt	.\input\inputwave_y.txt	Earth_EW 波を y 方向の地震動にコピー

.\Earth_UD.txt .\input\inputwave_z.txt

Earth_NS 波を x 方向の地震動にコピー Earth_EW 波を y 方向の地震動にコピー Earth_UD 波を z 方向の地震動にコピー Response を実行

test をダブルクリックすると、新しい地震動を入力とした解析が実行される。

1 個のファイルをコピーしました。
 1 個のファイルをコピーしました。
 1 個のファイルをコピーしました。
 >>>> Start elastic modal analysis
 >>>> Start nonlinear dynamic analysis
 1 % finished
 2 % finished
 3 % finished