TMD example of a high-rise building (20-story model)

1. Building Model

- 20 story steel building (lumped mass model with shear spring)
- Story height 3.2 m
- Building height $H=3.2 \text{ m} \times 20 = 64 \text{ m}$
- Natural period T = 0.02 H = 1.28 sec
- Plan size X direction: 20 m, Y-direction: 28 m
- Story weight Assuming the unit weight 12 kN/m², $W_i = 6720$ kN
- Story mass $M_i = \frac{W_i}{g} = \frac{6720 \ kN}{9.806 \times 10^3 \ mm/s^2} = 0.6853 \ kN. \ s^2/mm$
- Building mass $M_s = \frac{W_s}{g} = \frac{134.4 \times 10^3 \, kN}{9.806 \times 10^3 \, mm/s^2} = 13.71 \, \frac{kN. \, s^2}{mm}$
- Story stiffness From the Appendix

$$k_i = \frac{1}{2} [n(n+1) - i(i-1)]m_i \omega^2$$
 $i = 1 \text{ to } n$

- Story damping Assuming the proportional damping to the stiffness

$$c_i = 2h\omega \frac{k_i}{\omega^2} = \frac{2h}{\omega}k_i = \alpha k_i$$
, $\alpha = \frac{2h}{\omega}$

where *h* is the damping factor (=0.02)

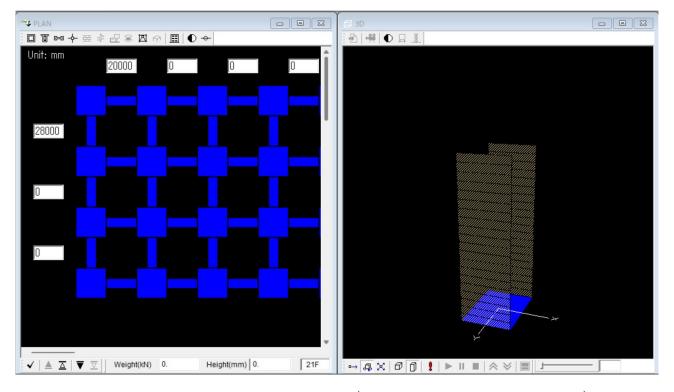


Figure 1 Analysis model of the building (20-story model without TMD.stera)

		-	-	
Story	Height (mm)	Weight (kN)	K(kN/mm)	C (<i>kN</i> . <i>s/mm</i>)
1	3200	6720	3467.7	28.3
2	3200	6720	3451.1	28.1
3	3200	6720	3418.1	27.9
4	3200	6720	3368.6	27.4
5	3200	6720	3302.5	26.9
6	3200	6720	3220.0	26.2
7	3200	6720	3120.9	25.4
8	3200	6720	3005.3	24.5
9	3200	6720	2873.2	23.4
10	3200	6720	2724.6	22.2
11	3200	6720	2559.5	20.9
12	3200	6720	2377.8	19.4
13	3200	6720	2179.7	17.8
14	3200	6720	1965.0	16.0
15	3200	6720	1733.8	14.1
16	3200	6720	1486.1	12.1
17	3200	6720	1221.9	10.0
18	3200	6720	941.2	7.7
19	3200	6720	644.0	5.2
20	3200	6720	330.3	2.7

Table 1 Properties of Building

2. Design of TMD

Assuming the mass ratio	$\mu = 0.03$
Weight of TMD	$W_d = W_s \times \mu = 134.4 \times 10^3 \ kN \ \times 0.03 = 4032 \ kN$
Mass of TMD	$m_d = \frac{W_d}{g} = 0.4112 \ kN. \ s^2/mm$
Optimum frequency ratio	$\frac{\omega_{\rm d}}{\omega_{\rm s}} = \frac{1}{1+\mu} = \frac{1}{1.03} = 0.97$
Circular frequency of TMD	$\omega_{\rm d} = 0.97 \times \omega_{\rm s} = 0.97 \times \frac{2\pi}{T_{\rm s}} = 0.97 \times \frac{2\pi}{1.28} = 4.766$
Natural period of TMD	$T_{\rm d} = \frac{1.28}{0.97} = 1.318 { m sec}$
Stiffness of TMD	$K_d = m_d \omega_d^2 = 0.4112 \times 4,76^2 = 9.34 \ kN/mm$
Optimum damping factor	$h_{opt} = \sqrt{\frac{3\mu}{8(1+\mu)^3}} = 0.101$
Damping coefficient of TMD	$C_d = \frac{2h_{opt}}{\omega_d} K_d = 0.398 \ kN.s/mm$
Story height of TMD	6 m

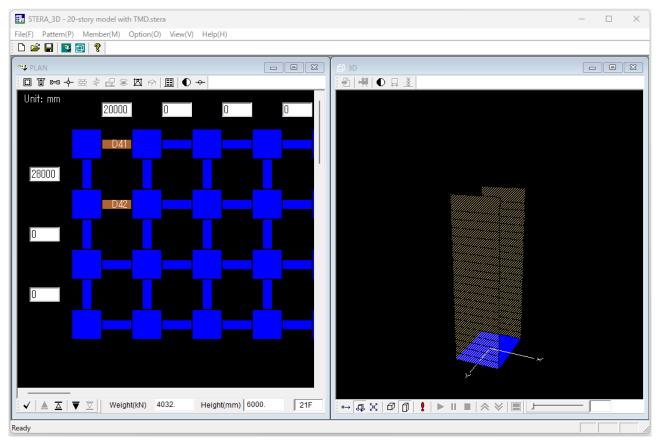


Figure 2 Analysis model of the building with TMD (20-story model with TMD.stera)

		1		
Story	Height (mm)	Weight (kN)	K(kN/mm)	C (<i>kN</i> . <i>s/mm</i>)
1	6000	4032	9.34	0.398

3. Input procedures of STERA_3D

Step 1. Restrained freedom number

Option > Structure

Since the direction of freedom is only X-direction (1), set "Restrained freedom number" to be 2345678.

Restrained freedom number 2345678	Example		
	2467 X-direction only		
1(Ux), 2(Uy), 3(Uz) : lateral freedom	1568 Y-direction only		
4(Rx), 5(Ry), 6(Rz) : rotation freedom	45678 no rotation freedom		
7(Gx), 8(Gy) : shear rotation freedom	78 rigid connection		
P-Delta Effect	Mass Distribution		
Not considered C Considered	C Same at all nodes		
	 In proportion to influence area 		
	C Independent at each node Import		

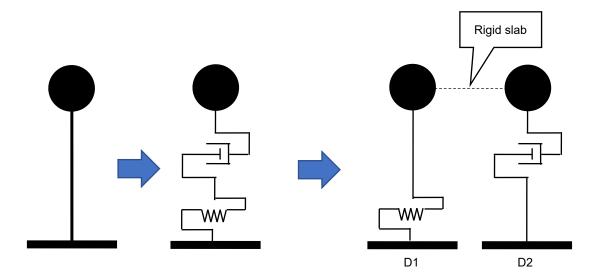
Step 2. Passive damper

Option > Member

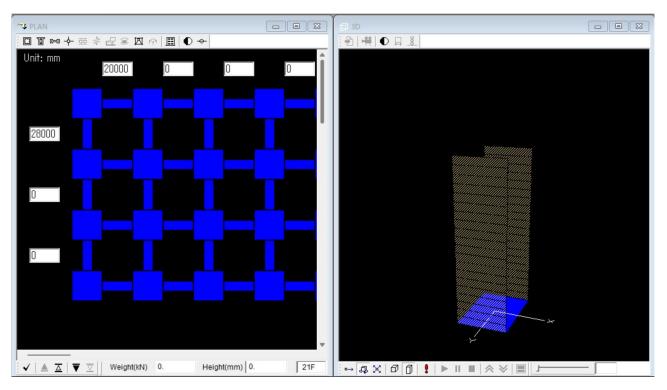
Since the passive damper is used for the lateral spring, set "Passive Damper" to be Considered.

Column	Seismic Isolation
	Not considered C Considered
Beam	Passive Damper
• RC C S C SRC C Direct C Mix	Not considered Considered
Wall	Masonry Wall
RC O S O SRC O Direct O Mix (brace) (brace)	Not considered C Considered
Floor Slab	External Spring (above basement)
2D Rigid C 3D Rigid C Flexible C Mix (rigid plane)	Not considered C Considered
Ground Spring	Nonlinear Shear Spring
C Nana C Cana model C Direct	C Not considered C Considered

Step 3. Damping factor

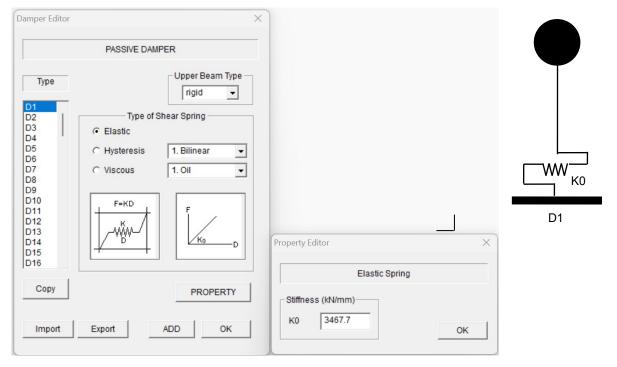

Option > Analysis > Dynamic

Since the damping property is given for each individual element, the viscous damping factors, h1 and h2, are set to be zero.

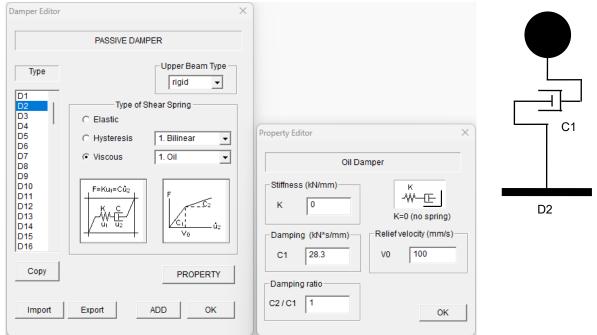

Dynamor	nalysis
No. of Subdivision of Time 5	Subdivision of time in output files C Yes C No
Damping	Filter to get Ground Displacement
Damping Type 1. [C]=a[K0]	fL: Low Cut 0.1 (Hz)
Damping Factor h1 0.0	fH: High Cut 20 (Hz)
h2 0.0	Order 10
Numerical Integration Method	
Average Acceleration	3/10 10
C Operator Splitting	f/fL f/fH Butterworth Band-pass Filter
Input Motion	1
Earthquake C Vibrator C Wind	

Step 4. Member setting (Main Building)

One story consists of two passive dampers (D1 and D2) with D1 as a spring member and D2 as a damping member.



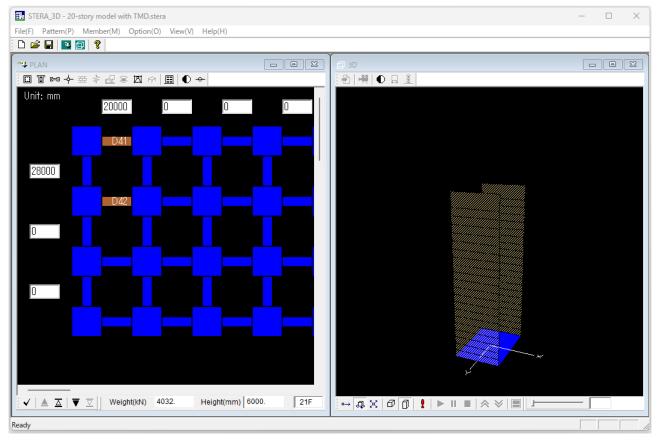
X-span 20000 mm, Y-span 28000mm, Story Weight 6720 kN, Story Height 3200 mm Continue to create up to 20th floor (D1 \sim D40)


Passive dampers D1, D3, ..., D39

Select type of shear spring to be "Elastic", and input the stiffness K0 in "PROPERTY" window.

Passive dampers D2, D4, ..., D40

Select type of shear spring to be "Viscous" and input the damping coefficient C1 in "PROPERTY" window. Other parameters, stiffness K =0, Damping ratio(C2/C1) =1, Relief velocity V0 = 100 mm/s.

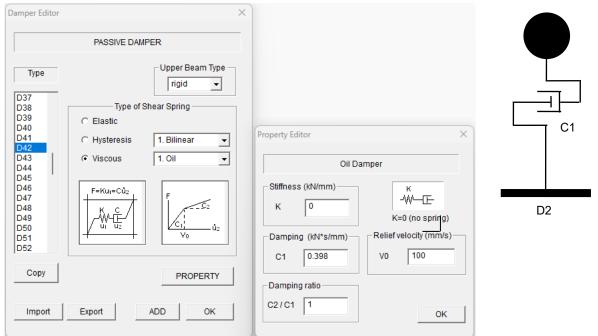


Save the input data in the file "20-story model without TMD.stera".

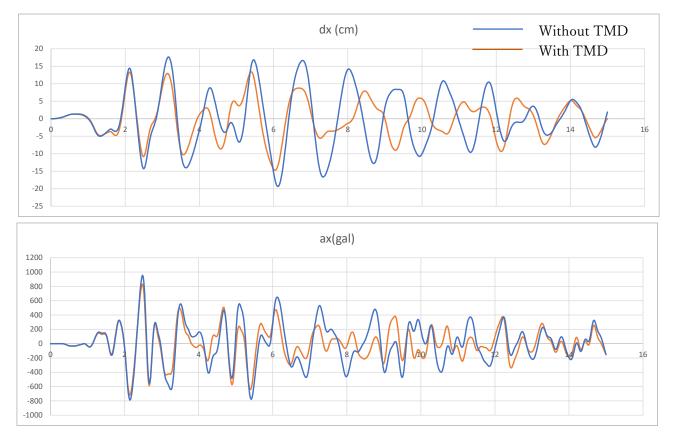
Step 5. Member setting (TMD)

Create a TMD model for one floor above the main building (21st floor) with D41 as a spring member and D42 as a damping member.

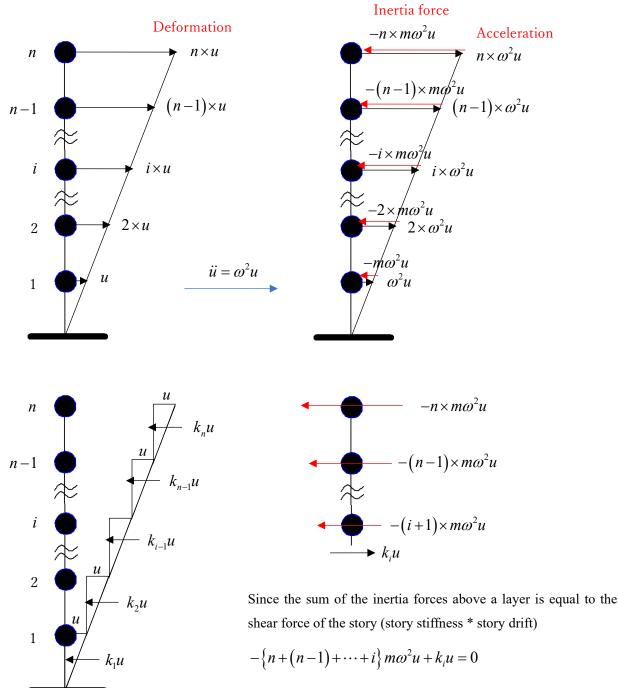
Assume that the weight of the floor is 4032 kN and the height of the floor is 6000 mm.


Passive damper D41

Select type of shear spring to be "Elastic", and input the stiffness K0 in "PROPERTY" window.


Passive damper D42

Select type of shear spring to be "Viscous" and input the damping coefficient C1 in "PROPERTY" window. Other parameters, stiffness K =0, Damping ratio(C2/C1) =1, Relief velocity V0 = 100 mm/s.


Save the input data in the file "20-story model with TMD.stera".

Displacement and acceleration responses at the 20^{th} floor of the buildings with and without TMD under the El Centro 1940_NS earthquake wave are compared.

APPENDIX: Calculation of the story stiffness under an inverted triangle mode shape

Consider a building swaying with a first natural frequency ω and an inverted triangle natural vibration mode shape. The distributions of deformation, acceleration and inertia force (acceleration multiplied by the mass of each layer) are presented below.

Therefore, the story stiffness is obtained as

$$k_{i} = \left\{ n + (n-1) + \dots + i \right\} m\omega^{2} = \frac{1}{2} \left\{ n(n+1) - i(i-1) \right\} m\omega^{2}$$